
Information Retrieval and Extraction, 2005

Term Project
Date:2005/06/27

網媒博一 張原豪 D93944006

Table of Contents

Table of Contents... 1
1. System Environment... 2
2. Files in This Zipped File .. 2
3. Overview ... 2
4. System Architecture.. 3

4.1. Indexing ... 5
4.1.1. Stop words, verb tenses .. 6
4.1.2. Hash table and Inverted Files.. 6
4.1.3. Index of inverted files and boundary index.. 7
4.1.4. Indexing training documents ... 7
4.1.4.1. Index FBIS3... 8
4.1.4.2. Index FBIS3+FBIS4... 8
4.1.4.3. FBIS4 increment.. 9
4.2. Query ... 10
4.2.1. Query FBIS3.. 10
4.2.2. Query FBIS3+FBIS4.. 10
4.3. Evaluation ...11
4.3.1. Evaluate FBIS3...11
4.3.2. Evaluate FBIS3+FBIS4 ... 12

5. Notes for Users ... 13
6. Experiment Result... 13
7. Conclusion .. 15

1. System Environment

Developing language: Visual C++ 6.0

Platform: windows XP with Pentium IV 3.0GHz, 512MB DDR RAM

2. Files in This Zipped File

Directory RelevanceJudgements: where the source code is stored

d93944006_IR_TermProject_Report.pdf: the document you are reading now.

3. Overview

As the Internet becomes more and more popular, we can acquire huge amount of information in a short

time. Therefore, how to retrieve the relevant documents that we want becomes an important issue.

However, to create a information retrieval model with high precision-recall is not an easy task. A lot of

relevance model has been proposed to create a high precision-recall system, but the results of most

proposed models are not satistiable.

In this term project, I design an information retrieval (IR) model to create a high relevance judgement

system with the material from FBIS3 and FBIS4 of TREC6.

The following tale is the summarization of the IR model that I designed.

Full Index Time Incremental
Time Metrics

Doc Set Parsing

Time
Sorting
Time

Parsing
Time

Sorting
Time

Query
(Searching)

Time

Average
Precision

Precision
at R(30%)

Precision
at 10 docs

FBIS3 73s 36s 1s 0.30 0.48 0.64

FBIS3+FBIS4 149s 107s 77s 111s 2s 0.30 0.52 0.56

We can find that this model has very good performance at query since I use some special indexing

techniques to reduce searching time and internal buffer for each file to reduce the number of

performing disk I/O. This is a tradeoff between indexing time and searching time. That is the

model uses more indexing time to create more comprehensive indexes in order to reduce

searching time at queries. However, the average precision in this model is comparatively low. I

configure some different weighting parameters for title, narrative, description, and text sections, but the

 2

average precision is still very low. No matter how I configure these parameters, the best average

precision is around 30%. And most of time, the average precision is around 18% to 25%. Due to the

time limitation, I don’t analyze how the trec_eval program judge a document is relevant or not relevant

about the query topics 301, 302, 304, 306, and 307. Instead I follow this project’s instruction to create

index files and then generate my ranked answer list followed by using trec_eval program to judge my

IR model’s 11 standard recall levels.

All the details are discussed and explained in the following sections.

4. System Architecture

Figure 1 shows the procedure of parsing documents and creating indexes for later queries, while Figure

2 depicts the query procedure in my IR model.

Step1: Indexing Step2: Create index of indexes

Document sets Sort key words in 26

inverted files

Figure 1: Indexing procedure

Convert verb to it present tense

Stemming

Weight and put to 26 inverted

files according to key word’s first

English letter

(Sort indexes before putting each

document’s key words into

inverted files.)

Create an index pointing

to each key word’s

position in inverted files

and recording the key

word’s document

frequency.

Discard stop words

Create an boundary

index for the index files

of inverted files. (used

for accelerating

searching)

 3

Query

Parse query terms

(Give different field with different weight)

Discard stop words

Stemming

Check the boundary index to find out the region of index file that we

need in order to find this word in inverted files.

Figure 2: Query procedure

In order to accelerating searching time, we sort the inverted files in alphabetical order and create a two

level index. For each query term, we check the boundary index according to this term’s first English

letter. The following examples shows that the query term is “dog”, it’s first English letter is “d” so the

system checks the entry for “d” and find the range of index terms starting with “d” in index of inverted

files. We use binary search to search the entry for “dog” in index of inverted files. When we find this

entry, we can also retrieve this term’s offset and document frequency in sorted inverted files. In this

example, we can tell “dog” starts at offset 2 and there are 3 documents having this word “dog” in

inverted file for “d”. Since the inverted files are sorted at indexing phase, we can just fetch the exact

records from the corresponding inverted file starting from the exact offset position. In this example, we

can tell the query term “dog” is relevant to FBIS3-2, FBIS3-9 and FBIS4-2 with tf-idf weight 6.12, 1.00

and 3.8 respectively. Through this indexing technique, we just use binary search for searching

the query term in “index of inverted files,” and don’t need to search inverted files. This can save

a lot of time on searching since this size of “index of inverted files” is much smaller than

“inverted files.” At the same time, we use binary file to store these index information in order to

save the files size of indexing, and we also make each record in the same index file has the

same size in order to accelerating read and write records in each file. Since each record’s size is

the same, we can easy to seek the starting address of this particular record to save the times of

accessing disks or searches. The only drawback is that we 5 MB to store the” index of inverted

files” to create indexes pointing out the exact term’s position in inverted files.

 4

Index of
inverted files

Boundary
index

Inverted files
(Use sorted array) Query term

(check this

term’s first

English letter)

Figure 3: A query example

During indexing, sorting, or query, we always maintain an internal buffer for each file. With maintaining

such internal buffers, we can save millions of time of accessing hard disk, which is extremely slow

comparing to the access time of RAM.

During sorting phase, we use quick sort to save sorting time, and also use stemming to reduce the

number of index terms and solve word’s morphology. In total, the size of index files for FBIS3 and

FBIS4 is around 500 MB.

4.1. Indexing

There are a lot of details that we have to take into consideration while creating indexes. First of all, we

need to remove stop words since these words are meaningless but have high frequency of occurrence.

Second, we have to consider morphology of English words, including converting verb’s to its

present tense and stemming words.

After considering stop words, verb tenses, and stemming issues, we can think about how to create

indexes from training corpus, TREC6, especially that we want to create an indexing mechanism that

e.g., “dog”

a

b

c

d

e

…

z

dog

Query term

abandom 3 30
…
baby 4 50
…
cat 100 5
…
dab 5 4
…
dog 2 3
…
z … …

 Inverted
file for ‘a’

 Inverted
file for ‘b’

dig FBIS3-1 5.38
dig FBIS4-9 18.38
dog FBIS3-2 6.12
dog FBIS3-9 1.00
dog FBIS4-2 3.8
dug FBIS3-7 6.3

Inverted
file for ‘d’

Key word

offset

Document
frequency

…

 Inverted
file for ‘z’

f

Key word
tf-idf weight

Doc name

 5

can have a very efficient way for searching in order to make users acquire information with an

reasonable response time.

The above issues will discuss in the following subsections.

4.1.1. Stop words, verb tenses

In fact, stop words and verb tenses have same problem. That is how to find out whether this term is a

stop word, another tense of a verb, or different morphing of anther word. In order to accelerate

matching a term from stop word list and verb tenses list, I sort each list and use each English word’s

first letter as index to classify them into 26 groups. Therefore, while matching a word, we can check this

word’s first English letter to find out the region and then use binary search to search this boundary. The

following figure illustrates that we can use the first letter of dog “d” to find out the possible region of the

word “dog” followed by performing binary search in this region to find out whether “dog” is in the list.

Sorted stop word list or 3
non-regular verb tense list

…

abandom

4.1.2. Hash table and Inv

I take one document numbe

from this document are temp

this word has been found in

weight of the field that this w

create a new item to stor

accumulated weight words in

The data in output buffers of

of parsing.

In order to find out whether t

a
…
b baby
…
c
cat
d …
dab
e …
dog
…

f
 z

z

e

r

rted Files

 as a parsing unit, such as FBIS3-1, FBIS3-2… etc. All the words retrieved

orarily stored in RAM. While retrieving a new word, we will search whether

 this document or not. If found, increase this word’s weight by 1, or the

ord appears. If this is the first time that this word appears in this document,

e it in RAM. After finishing scanning this document, classify all the

 RAM into 26 inverted files’ output buffer by each word’s first English letter.

26 inverted files will be flushed to file while the buffer is full or reaching end

his new retrieved word, called token, is already in temporal buffer in RAM,

6

we create a hash table to increase the searching speed. We create a hash entry pointing the places

where this word is stored. This hash table’s hash function uses each word’s first letter’s 4-LSB and

second’s 4 LSBs as index to identify this word belonging to which hash entry class. The equation is

listed in the following:

Word’s hash entry = (word[0]&0x0f << 4) | (word[1] & 0x0f)

With this hash table, the average search time with this hash table is around 1/1000 of that of linear

search.

After parsing all the documents, our 26 inverted files classified by the first English letter of words are

also created. Each item in inverted files has three elements, which are word, document name, and

word’s weight (Illustrated in Figure 3). However, creating inverted files is not good enough, so we still

need to add some features to enhance the performance of searching items from inverted files. That’s

why we need index of inverted files and boundary index.

The size of inverted files for FBIS3 and FBIS4 is around 600MB.

4.1.3. Index of inverted files and boundary index

After creating inverted files, we need to sort these 26 inverted files in alphabetical order. However,

personal computer’s memory size is not big enough to store all inverted files in RAM. The size of

inverted files for FBIS3 and FBIS4 is around 600MB. Therefore, it’s impossible to load inverted files into

RAM and then sort them. That’s why I separated them into 26 inverted files according to each word’s

first English letter. In this way, the size of the biggest inverted file is around 35 MB which is acceptable.

Therefore, I load one inverted file into RAM and adopt Quick Sort to sort this inverted file and then

store it back to file in one go. After sorting, we scan the whole sorted inverted file to collect

information about each word’s offset and document frequency in the inverted file. We create

one item in index of inverted files for each word in inverted files. In this way, once we find the

item in index of inverted files, we can fix the offset and number of occurrence of this particular

word in inverted files. Since we scan inverted files after inverted files have been sorted.

Therefore, the index of inverted files is also sorted in alphabetical order. However, we still

need to search the query word in the index of inverted files. In order to reduce the search time, I

create a boundary index indicating the upper bound and lower bound of one enough English

letter.

The operation mechanism is introduced in section 3.System Architecture.

4.1.4. Indexing training documents

 7

In this project, there are three requirement of creating indexes. They are “index FBIS3”, “index

FBIS3+FBIS4,” and “index FBIS3 + increment FBIS4.”

4.1.4.1. Index FBIS3
The indexing procedure was described in previous sections. Therefore, we just show the performance

of indexing FBIS3 in Figure 4. We can tell the system spends 73 seconds in indexing creating inverted

files while spending 36 seconds in sorting inverted files. Due to the special designed hash functions

and indexing techniques, we spend less than 2 minutes to create a very good architecture of inverted

files for queries.

Figure 4: Indexing FBIS3

4.1.4.2. Index FBIS3+FBIS4

The elapsed time for creating inverted files for FBIS3 and FBIS4 is 149 seconds, but the elapsed time

for sorting index files is 107 seconds, which is more than 2 times of that for sorting FBIS3 only. The

reason is that quick sort is an O(n*logn) algorithm.

 8

Figure 5: Indexing FBIS3+FBIS4

4.1.4.3. FBIS4 increment

In addition to create index in one go, we need to increment new index items while new document

coming into our corpus. Therefore, performing incremental inverted files is necessary. In this project,

the requirement is that we create inverted files for FBIS3 followed incremental FBIS4. My solution for

incremental inverted files is to parse the new documents coming from FBIS4 and append to the

existing inverted files. After finishing parsing FBIS4, we sort these incremented inverted files

and also create new index of inverted files and index boundaries. Therefore, the content of

index boundary, index of inverted files, and inverted files is the same of indexing FBIS3 and

FBIS4 directly. Since we sort the whole inverted files including both FBIS3 and FBIS4, the sorting time

is similar to sorting FBIS3+ FBIS4. That’s the drawback of my solution. In other words, my solution

spend some unnecessary on sorting. Therefore, there is still room for improvement. However, it’s a

 9

workable solution.

Figure 6: Incremental FBIS4

4.2. Query
In this project, the query topics are 301, 302, 304, 306, and 307. I report the top 2000 ranked

document to be evaluated by trec_eval program. The query performance is shown in the following:

4.2.1. Query FBIS3
We can find that the query time is only 1 second. The performance is quite impressive.

Figure 7: Query FBIS3

4.2.2. Query FBIS3+FBIS4

 10

The query time for FBIS3+FBIS4 is 2 seconds. Again, the performance is extremely good. The reason

is due to my special indexing architecture.

Figure 8: Query FBIS3+FBIS4

4.3. Evaluation

In this project, trec_eval program is the tool to evaluate our system’s performance. The evaluation

result is as follows:

4.3.1. Evaluate FBIS3

The following is the result evaluated by trec_eval program with FBIS3 as the training data. The average

precision is only around 30%.

 11

Figure 9: Evaluate FBIS3

4.3.2. Evaluate FBIS3+FBIS4

The following is the result evaluated by trec_eval program with FBIS3+FBIS4 as the training data. The

average precision is only around 30%.

 12

5. Notes for Users

If you want to run this system, remember put the FBIS3 and FBIS4 documents under directory FBIS,

which should be located in the same directory as directory RelevanceJudgements.

6. Experiment Result

In this experiment, I trained my system with FBIS3 and BFIS4 document set from TREC6. After the

system has been trained, the query topics 301, 302, 304, 306, and 307 are used to evaluate our system,

followed by using trec_eval program to verify my system performance.

I test my system with two metrics. The first is 11 standard recall levels, and the relation between

number of documents and precision. Figure 11 depicts the system’s 11 standard recall levels. We can

tell that the system’s precision is up to 90% while the recall level is very low. However, the system’s

precision decades seriously as the recall level increases.

 13

The other metric is measuring system’s precision related to the number of documents. We can tell that

the system’s precision decades dramatically while the retrieved number of documents increases. In

addition, an interesting phenomenon is that the system’s precision with retrieved 5 documents is higher

than that with 10 documents.

Figure 11: 11 standard recall levels

 14

Figure 12: Precision

7. Conclusion

In conclusion, although this designed IR model doesn’t perform good performance in terms of precision

and precision-recall level. However, it demonstrates a good IR model to create indexes in an efficient

way, and have extremely good performance at query, especially searching time.

In this project, I learn that using tf-idf is not an ideal way to design IR model, since a document with

high query term frequencies doesn’t mean that it’s more relevant than other documents.

Another lesson I’ve learned through this project is that I learn how to improve system performance

while handling with a huge amount of files including reading and writing data, searching a specific item,

and how to create an efficient indexing architecture. A good searching and indexing model can save

hundreds of times while comparing to a poor searching and indexing model.

 15

	Table of Contents
	System Environment
	Files in This Zipped File
	Overview
	System Architecture
	Indexing
	Stop words, verb tenses
	Hash table and Inverted Files
	Index of inverted files and boundary index
	Indexing training documents
	Index FBIS3
	Index FBIS3+FBIS4
	FBIS4 increment
	Query
	Query FBIS3
	Query FBIS3+FBIS4
	Evaluation
	Evaluate FBIS3
	Evaluate FBIS3+FBIS4

	Notes for Users
	Experiment Result
	Conclusion

