Information Retrieval and Extraction, 2005

Term Project

Date:2005/06/27
D93944006

Table of Contents
TADIE OF CONLENTS. ...ttt et e s bt e s hr e e st e e e sh b e e et et e be e e b e e nnr e e e neeennneas 1
Y £ (=Y g T = N VZ1 (0] o 31T o | USSP 2
2 Files in ThiS ZIPPEA FlEuveeeiieee e e e e et e e e e e s e e srbneeeaaeeas 2
T O 1Y Y OO PR SPPPPPPPRRPPPN 2
4 YY) T I AN o 1) (=Tt (B R 3
4.1. 1o 131 T PSR 5
4.1.1. StOP WOTAS, VEID tENSES .. .uvviiiiiee it e e e e e e e e s s st r e e e e e e e e s nnneees 6
4.1.2. Hash table and INvVerted FleS...........oo i 6
4.1.3. Index of inverted files and boundary INAeX..........ccceveeeiiiiiiiiiic e 7
4.1.4. Indexing training dOCUMENLSccuuiiiiiie e e e e e e e e s e e e e e s e e sanrrraeeeee s 7
41.4.1. [0 =3 =] K ST SPTR 8
4.1.4.2. INAEX FBIS3HFBISA......coi ittt ettt e e st e e s snbe e e s sbbeeeesntaeeaeans 8
4.143. FBISZ INCIEMENL.....ciiiiieitie ittt ettt s et bt e st e e s nr e e snr e e e snreeaneeas 9
4.2. (O L UT= YT UPPP TP 10
42.1. QUETY FBIS3 ...ttt ettt e e ettt e et ee et e et et et et ee e e et ee et er s s eenenees 10
4.2.2. QUENY FBISSHFBISA ... 10
4.3. EVAIUBLION ..ottt r e nreas 11
4.3.1. EVAlUALE FBIS3.... oottt nnae s 11
4.3.2. Evaluate FBIS3+FBISA ..ottt 12
LT [(=2 (o] g0 LT =T = PP PP 13
6. EXPEIMENT RESUIL.....cco e e e e e e e s e e e e e e e e s et b r e e e e e e e e e e snreneeaaeens 13
A 7o (o111] To] H PP VRRPPRPPIN 15

1. System Environment

Developing language: Visual C++ 6.0
Platform: windows XP with Pentium IV 3.0GHz, 512MB DDR RAM

2. Filesin This Zipped File

Directory RelevanceJudgements: where the source code is stored

d93944006 _IR_TermProject_Report.pdf: the document you are reading now.

3. Overview

As the Internet becomes more and more popular, we can acquire huge amount of information in a short

time. Therefore, how to retrieve the relevant documents that we want becomes an important issue.
However, to create a information retrieval model with high precision-recall is not an easy task. A lot of
relevance model has been proposed to create a high precision-recall system, but the results of most

proposed models are not satistiable.

In this term project, | design an information retrieval (IR) model to create a high relevance judgement
system with the material from FBIS3 and FBIS4 of TRECSG.

The following tale is the summarization of the IR model that | designed.

. . Incremental
Metrics | Full Index Time Time (SéglLr]cerr]?lng) Average | Precision | Precision
Parsing | Sorting | Parsing | Sorting : Precision | at R(30%) | at 10 docs
Doc Set Time
Time Time Time Time
FBIS3 73s 36s 1s 0.30 0.48 0.64
FBIS3+FBIS4 | 149s 107s 77s 111s 2s 0.30 0.52 0.56

We can find that this model has very good performance at query since | use some special indexing

techniques to reduce searching time and internal buffer for each file to reduce the number of

performing disk I/0. This is a tradeoff between indexing time and searching time. That is the

model uses more indexing time to create more comprehensive indexes in order to reduce
searching time at queries. However, the average precision in this model is comparatively low. |

configure some different weighting parameters for title, narrative, description, and text sections, but the

average precision is still very low. No matter how | configure these parameters, the best average
precision is around 30%. And most of time, the average precision is around 18% to 25%. Due to the
time limitation, | don’t analyze how the trec_eval program judge a document is relevant or not relevant
about the query topics 301, 302, 304, 306, and 307. Instead | follow this project’s instruction to create
index files and then generate my ranked answer list followed by using trec_eval program to judge my

IR model’'s 11 standard recall levels.

All the details are discussed and explained in the following sections.

4. System Architecture

Figure 1 shows the procedure of parsing documents and creating indexes for later queries, while Figure

2 depicts the query procedure in my IR model.

Stepl: Indexing Step2: Create index of indexes

Document sets Sort key words in 26

inverted files

\ 4

Discard stop words A
‘ Create an index pointing
Convert verb to it present tense to each key word's
position in inverted files
A and recording the key
Stemming word’s document
] frequency.
Weight and put to 26 inverted A
files according to key word’s first Create an boundary
English letter index for the index files
(Sort indexes before putting each of inverted files. (used
document’s key words into for accelerating
inverted files.) searching)

Figure 1: Indexing procedure

Query

Parse query terms
(Give different field with different weight)

A 4

Discard stop words

Check the boundary index to find out the region of index file that we

need in order to find this word in inverted files.

Figure 2: Query procedure

In order to accelerating searching time, we sort the inverted files in alphabetical order and create a two
level index. For each query term, we check the boundary index according to this term’s first English
letter. The following examples shows that the query term is “dog”, it's first English letter is “d” so the
system checks the entry for “d” and find the range of index terms starting with “d” in index of inverted
files. We use binary search to search the entry for “dog” in index of inverted files. When we find this
entry, we can also retrieve this term’s offset and document frequency in sorted inverted files. In this
example, we can tell “dog” starts at offset 2 and there are 3 documents having this word “dog” in
inverted file for “d”. Since the inverted files are sorted at indexing phase, we can just fetch the exact
records from the corresponding inverted file starting from the exact offset position. In this example, we
can tell the query term “dog” is relevant to FBIS3-2, FBIS3-9 and FBIS4-2 with tf-idf weight 6.12, 1.00
and 3.8 respectively. Through this indexing technique, we just use binary search for searching
the query term in “index of inverted files,” and don’t need to search inverted files. This can save
a lot of time on searching since this size of “index of inverted files” is much smaller than
“inverted files.” At the same time, we use binary file to store these index information in order to
save the files size of indexing, and we also make each record in the same index file has the
same size in order to accelerating read and write records in each file. Since each record’s size is
the same, we can easy to seek the starting address of this particular record to save the times of
accessing disks or searches. The only drawback is that we 5 MB to store the” index of inverted

files” to create indexes pointing out the exact term’s position in inverted files.

Boundary Index of Inverted files

Query term index inverted files (Use sorted array)
(check this a abandom 3 30 Inverted
term’s first b Béby 4 50 file for ‘a
English letter) c ...t 100 5 Inverted
e.g., “dog” d ca file for ‘b’
T g Faiseo 15,08 merel
9 i - file for ‘d’

f dog 23— % |dog FBIS3-2 6.12

dog dog FBIS3-9 1.00

Z ¥ dog FBIS4-2 3.8

Query term z | || dyg FBIS3-7 6.3

Key word l
Document Inverted
frequency file for ‘'z’
offset
v L
N
Key word . .
v tf-idf weight
Doc name

Figure 3: A query example

During indexing, sorting, or query, we always maintain an internal buffer for each file. With maintaining
such internal buffers, we can save millions of time of accessing hard disk, which is extremely slow

comparing to the access time of RAM.

During sorting phase, we use quick sort to save sorting time, and also use stemming to reduce the
number of index terms and solve word’s morphology. In total, the size of index files for FBIS3 and
FBIS4 is around 500 MB.

4.1. Indexing

There are a lot of details that we have to take into consideration while creating indexes. First of all, we
need to remove stop words since these words are meaningless but have high frequency of occurrence.
Second, we have to consider morphology of English words, including converting verb’s to its

present tense and stemming words.

After considering stop words, verb tenses, and stemming issues, we can think about how to create

indexes from training corpus, TRECS6, especially that we want to create an indexing mechanism that

can have a very efficient way for searching in order to make users acquire information with an

reasonable response time.

The above issues will discuss in the following subsections.

4.1.1. Stop words, verb tenses

In fact, stop words and verb tenses have same problem. That is how to find out whether this term is a
stop word, another tense of a verb, or different morphing of anther word. In order to accelerate
matching a term from stop word list and verb tenses list, | sort each list and use each English word’s
first letter as index to classify them into 26 groups. Therefore, while matching a word, we can check this
word’s first English letter to find out the region and then use binary search to search this boundary. The
following figure illustrates that we can use the first letter of dog “d” to find out the possible region of the

word “dog” followed by performing binary search in this region to find out whether “dog” is in the list.

Sorted stop word list or 3
non-regular verb tense list

a abandom
b Béby

¢ cat

d

o \4 dab

f dog

z

4.1.2. Hash table and Inverted Files

| take one document number as a parsing unit, such as FBIS3-1, FBIS3-2... etc. All the words retrieved
from this document are temporarily stored in RAM. While retrieving a new word, we will search whether
this word has been found in this document or not. If found, increase this word’'s weight by 1, or the
weight of the field that this word appears. If this is the first time that this word appears in this document,
create a new item to store it in RAM. After finishing scanning this document, classify all the
accumulated weight words in RAM into 26 inverted files’ output buffer by each word’s first English letter.
The data in output buffers of 26 inverted files will be flushed to file while the buffer is full or reaching end

of parsing.

In order to find out whether this new retrieved word, called token, is already in temporal buffer in RAM,

we create a hash table to increase the searching speed. We create a hash entry pointing the places
where this word is stored. This hash table’s hash function uses each word’s first letter’'s 4-LSB and
second’s 4 LSBs as index to identify this word belonging to which hash entry class. The equation is
listed in the following:

Word’s hash entry = (word[0]&O0x0f << 4) | (word[1] & 0xOf)

With this hash table, the average search time with this hash table is around 1/1000 of that of linear

search.

After parsing all the documents, our 26 inverted files classified by the first English letter of words are
also created. Each item in inverted files has three elements, which are word, document name, and
word’s weight (lllustrated in Figure 3). However, creating inverted files is not good enough, so we still
need to add some features to enhance the performance of searching items from inverted files. That's

why we need index of inverted files and boundary index.

The size of inverted files for FBIS3 and FBIS4 is around 600MB.

4.1.3. Index of inverted files and boundary index

After creating inverted files, we need to sort these 26 inverted files in alphabetical order. However,
personal computer's memory size is not big enough to store all inverted files in RAM. The size of
inverted files for FBIS3 and FBIS4 is around 600MB. Therefore, it's impossible to load inverted files into
RAM and then sort them. That's why | separated them into 26 inverted files according to each word’s
first English letter. In this way, the size of the biggest inverted file is around 35 MB which is acceptable.
Therefore, | load one inverted file into RAM and adopt Quick Sort to sort this inverted file and then
store it back to file in one go. After sorting, we scan the whole sorted inverted file to collect
information about each word’s offset and document frequency in the inverted file. We create
one item in index of inverted files for each word in inverted files. In this way, once we find the
item in index of inverted files, we can fix the offset and number of occurrence of this particular
word in inverted files. Since we scan inverted files after inverted files have been sorted.
Therefore, the index of inverted files is also sorted in alphabetical order. However, we still
need to search the query word in the index of inverted files. In order to reduce the search time, |
create a boundary index indicating the upper bound and lower bound of one enough English

letter.

The operation mechanism is introduced in section 3.System Architecture.

4.1.4. Indexing training documents

In this project, there are three requirement of creating indexes. They are “index FBIS3”, “index
FBIS3+FBIS4,” and “index FBIS3 + increment FBIS4.”

4.1.4.1. Index FBIS3
The indexing procedure was described in previous sections. Therefore, we just show the performance

of indexing FBIS3 in Figure 4. We can tell the system spends 73 seconds in indexing creating inverted
files while spending 36 seconds in sorting inverted files. Due to the special designed hash functions
and indexing techniques, we spend less than 2 minutes to create a very good architecture of inverted

files for queries.

B3 CAWINDOWSisystem32\cmd exe -0 x|

D:~Johnzon“CoursessInformationRetrievalAndExtraction TermProject HelevanceJudgem

ents *RelevanceJudgements 1

Parzing verh tense list...

Parsing Storword list...

Indexing FBIS3...(We show thie szerial numbher of the file heing processed)
933 BP4 ORS ABe OBV BAE BE? P13 BAi4 B15 A6 G177 618 619
823 B24 B25 826 B27 B28 B29 B33 B34 B35 A36 @37 B38 BA3T
43 B44 645 A46 @47 A48 B49 B53 B54 P55 AS6 B5Y A58 @59
863 B64 B65 B66 B6Y B68 B6Y? 873 874 875 @76 877 678 879
B84 B85 B86 A8 B88 BA8? A6 A74 A?5 A%6 A7 A98 A77 166
164 1685 186 167 188 1879 116 114 115 116 117 118 119 128
124 125 126 127 128 129 138 134 135 136 137 138 139 148
144 145 146 147 148 149 156 154 156 157 158 159 168 161
165 166 167 168 167 178 171 175 176 177 178 179 188 181
185 187 188 189 199 191 192 196 197 198 199 280 281 262
286 288 207 210 211 212 213 217 218 219 220 221 222 223
227 228 229 230 231 232 233 237 238 237 240
time to parse corpus: Yis

*Indexes are classified into 26 files according to each word's first charactep»

Sorting index: a bc de f g hijklmnopgerstuuvuwxysz . Complete?

Elazped time for sovrting index files: 36s

Pressz any key to continue...

Figure 4: Indexing FBIS3

4.1.4.2. Index FBIS3+FBIS4

The elapsed time for creating inverted files for FBIS3 and FBIS4 is 149 seconds, but the elapsed time
for sorting index files is 107 seconds, which is more than 2 times of that for sorting FBIS3 only. The

reason is that quick sort is an O(n*logn) algorithm.

B CAWINDO WSisystem32\cmd exe -|a| x|

ents *RelevanceJudgements 2
Parsing verh tense list...
Parzing Storwvord list...
Indexing FBIS3...<{We show thie serial number of the file heing processed’
U022 AU3 8R4 AES A6 BAT BEE BR? A10 B11 612 G133 614 B15 616 817 618 B19
@22 B23 D24 B25 B26 B27 A28 B29 A0 B31 A32 B33 B34 B35 B36 A37 O38 @39
42 B43 B44 B45 P46 @47 P48 049 A560 P51 A52 @53 B54 BA55 B56 A57 B58 B59
B62 B63 Bo4d B65 B66 B67 B6E B6%7 Y0 B71 @Y2 B73 6874 875 676 877 678 B9
A82 AB4 B85 BB6 BARBTY BBE BAE? A8 A?1 A2 A3 A74 A5 A%6 A97 A8 B9? 160
183 1684 185 1686 167 1688 189 118 111 112 113 114 115 116 117 118 112 1208
123 124 125 126 127 128 129 138 131 132 133 134 135 136 137 138 139 140
143 144 145 146 147 148 149 156 151 152 153 154 156 157 158 159 166 161
164 165 166 167 168 169 178 171 172 173 174 175 176 177 178 179 188 181
184 185 187 188 18% 196 191 192 193 194 195 196 197 198 199 208 261 202
205 2686 288 287 216 211 212 213 214 215 216 217 218 219 2208 221 222 223
226 227 228 229 238 231 232 233 234 235 236 237 238 2397 248
Indexing FBIS4...(We show thie szerial numbher of the file heing processed)
BR3 BA4 PORS ABe BAY BA? A16 B11 BA12 613 B4 615 Bie A17 B18 B19 826
P24 B25 B26 B27 B28 B29 B30 B31 A32 B33 A34 B35 B35 B37 @38 B39 046
44 B45 P46 A47 B48 B47 B56 B51 B52 @53 A54 B55 B56 BL7 A58 B59 @66
B64 B65S B66 B6Y Be8 B69? B7E @71 BA72 673 874 B75 BY6 @77 @78 @A77 888
B84 B85 B86 A8 BA8? A8 A?1 @92 A?73 A94 A5 76 A7 G728 B79 1680 161
168% 1686 1687 1688 18?2 118 111 112 113 114 115 116 117 118 1192 128 121
125 126 127 128 129 138 131 132 133 134 135 136 137 138 139 140 141
14% 146 147 148 150 151 152 153 154 155 156 157 158 15% 166 161 162
166 167 168 169 170 171 172 173 174 175 176 177 178 179 186 181 182
186 187 188 189 199 171 192 193 194 195 1% 197 198 199 280 2681 282
286 287 208 2609 218 211 212 213 214 216 217 218 219 228 221 222 223
227 228 229 230 231 232 233 234 235 237 238 239 248 241 242 243 244
248 249 258 251 253 254 255 256 257 258 259 266 261 262
time to parse corpus: 14%=
*Indexes are classified into 26 files according to each word’'s first charactepr=
Sorting index: a bcde fghijgkIlmnopgerstuvwxyz . .Completet
Elazped time for sorting index files: 187=s
Press any key to continue...

Figure 5: Indexing FBIS3+FBIS4

4.1.4.3. FBIS4 increment

In addition to create index in one go, we need to increment new index items while new document
coming into our corpus. Therefore, performing incremental inverted files is necessary. In this project,
the requirement is that we create inverted files for FBIS3 followed incremental FBIS4. My solution for
incremental inverted files is to parse the new documents coming from FBIS4 and append to the
existing inverted files. After finishing parsing FBIS4, we sort these incremented inverted files
and also create new index of inverted files and index boundaries. Therefore, the content of
index boundary, index of inverted files, and inverted files is the same of indexing FBIS3 and
FBIS4 directly. Since we sort the whole inverted files including both FBIS3 and FBIS4, the sorting time
is similar to sorting FBIS3+ FBIS4. That's the drawback of my solution. In other words, my solution

spend some unnecessary on sorting. Therefore, there is still room for improvement. However, it's a

workable solution.

B3 CAWINDOWSisystem32iemd exe =l

ents *RelevanceJudgements 3
Parsing verh tense list...

Parsing Storwvord list...

Incremental FBIS4...(We zhow thie serial number of the file bheing processed)
AB2 AE3 BR4 BES AB6 BAT7 AE? B16 A1l B12 A13 A14 @15 B16 617 B18 6197 820
823 824 B25 BZe B27 @28 B29 G368 A31 B32 A33 B34 B35 B36 @37 B3B8 G237 B40
043 A44 P45 B46 P47 B48 B49 656 A51 B52 B53 @A%4 BLL BA56 B57 B58 B59 B6O
63 B64 Bh5 Boh B6T B6B B6T BV B/ B72 BY3 B74 675 B76 @77 BY8 077 A86
P83 A84 B85 AB6 AR BBY? A%G A1 A2 P93 A4 B%5 B%6 A%7 @98 A99 1860 161
104 165 186 1687 168 187 116 111 112 113 114 115 116 117 118 119 128 121
124 125 126 127 128 129 1306 131 132 133 134 135 136 137 138 139 148 141
144 145 146 147 148 158 151 152 153 154 155 156 157 158 159 168 161 162
165 166 167 168 169 178 171 172 173 174 175 176 177 178 179 186 181 182
185 186 187 188 187 196 191 192 193 194 195% 196 197 198 199 208 281 202
205 206 Z2B7Y 2008 209 210 241 212 213 214 246 217 218 249 220 221 222 223
226 227 228 229 238 231 232 233 234 235 237 238 239 248 241 242 243 244

248 249 258 251 253 254 255 256 257 258 259 266 261 262
time to parse corpus:| 7¢s

*Indexes are classified into 26 files according to each word's first charactep»

Sorting index: a bc de f g hijkIl1lmnopgperstuuvuwxysz . Complete?

Elazped time for sovrting index files: 1iis=s

Presz any key to continue...

Figure 6: Incremental FBIS4

4.2. Query
In this project, the query topics are 301, 302, 304, 306, and 307. | report the top 2000 ranked

document to be evaluated by trec_eval program. The query performance is shown in the following:

4.2.1. Query FBIS3
We can find that the query time is only 1 second. The performance is quite impressive.

B3 CAWINDOWS\system32\cmd exe =l

D:“Johnson*“Courses“InformationRetrievalAndExtractionsITermProject“RelevanceJudgem
ents *Re levanceJudgements 4

Parsing verb tense list...

Parszing Storwvord list...

Querying document: 361 382 384 386 367
Elazped time for query: 1=
Press any key to continue...

Figure 7: Query FBIS3

4.2.2. Query FBIS3+FBIS4

10

The query time for FBIS3+FBIS4 is 2 seconds. Again, the performance is extremely good. The reason

is due to my special indexing architecture.

B3 CAWINDOWSisystem32\cmd exe -|a| x|

D:~Johnzon“CoursessInformationRetrievalAndExtraction TermProject HRelevanceJudgem
ents *RelevanceJudgements 4

Parzing verh tense list...

Parsing Storword list...

Query. ..
Querying document: 361 382 384 386 367

Elazped time for query: 2=
Presz any key to continue...

Figure 8: Query FBIS3+FBIS4

4.3. Evaluation

In this project, trec_eval program is the tool to evaluate our system’s performance. The evaluation

result is as follows:

4.3.1. Evaluate FBIS3

The following is the result evaluated by trec_eval program with FBIS3 as the training data. The average

precision is only around 30%.

11

B8 CAWINDOWS\system32\cmd exe ﬂﬂ' x|

Queryid (Hum>: L
otal number of documents over all gueries
Retrieved: 18886
Relevant: 321
Rel_wet: 361
Interpolated Recall — Precision Averages:
at B.600 #8.7618
at B.108 B.8762
at B.20 B.5984
at B.308 B.4848
at ©.40 @.2194
at 8.58 B.1838
at B.668 B.1646
at B8.708 #.1382
at B.80 B.1274
at B.78 #.8918
at 1.06 b.8894
Average precizion (non—interpolated? for all rel docsdaveraged over gueriesl
A.36816
Precision:
At L doc
At 18 doc
At 15
At 28
At 3B
At 108
At 2006 d.1408
At 5006 H.8848
At 1806 #.8548
R—Precizion (precision after R (= num_rel for a guery? docs retrievedd:

8.4808
8.6408
B.5234
6.54088
H.4608
H.2168

[z]

==
[= N =~
oon

LI R R R R R |

Figure 9: Evaluate FBIS3

4.3.2. Evaluate FBIS3+FBIS4

The following is the result evaluated by trec_eval program with FBIS3+FBIS4 as the training data. The

average precision is only around 30%.

12

B3 CAWINDOWSisystem32\emd exe -|a| x|

Queryid (Humd:

otal number of documents over all gueries

Interpolated Recall — Preciszion Averages:

Average precision

Re
Re
Re

at
at
at
at
at
at
at
at
at
at
at

trieved:
levant:
1 _ret:

6.08
8.18
8.28
8.38
B.48
8.58
B.68
8.7a
B.86
8.9@
1.688

Precizion:

At
At
At
At
At
At
At
At
At

1
R—Precizion <(precision after R <= num_rel for a gquery? docs retrievedl:

L doc
18 doc
15 doc
28 docs
38 docs

188 docs
288 docs
LB@ docs
BBA docs:

Exact:

5

188668
665
588

A.%116
B.81268
B.6218
B.5234
B.2232
B.1984
A.1982
B.1524
B.1468
AB.8942
B.8126
Cnon—interpolated? for all rel docsCaveraged over gueries?
B.3004

6.48088
8.56088
B.6134
8.6288
a.56088
A.3288
a.2148
6.1288
6.8856

B.3956

5. Notes for Users

If you want to run this system, remember put the FBIS3 and FBIS4 documents under directory FBIS,

which should be located in the same directory as directory RelevanceJudgements.

6. Experiment Result

In this experiment, | trained my system with FBIS3 and BFIS4 document set from TRECSG. After the

system has been trained, the query topics 301, 302, 304, 306, and 307 are used to evaluate our system,

followed by using trec_eval program to verify my system performance.

| test my system with two metrics. The first is 11 standard recall levels, and the relation between

number of documents and precision. Figure 11 depicts the system’s 11 standard recall levels. We can

tell that the system’s precision is up to 90% while the recall level is very low. However, the system’s

precision decades seriously as the recall level increases.

13

The other metric is measuring system’s precision related to the number of documents. We can tell that
the system’s precision decades dramatically while the retrieved number of documents increases. In
addition, an interesting phenomenon is that the system’s precision with retrieved 5 documents is higher

than that with 10 documents.

11 Standard Recall Lewvels
1 T T T

FEISS —+—
FEISd ——

precizion

recall

Figure 11: 11 standard recall levels

14

Precision
0-? T T T T T T T

FEIZZ ——

FBISS —%—

precizion

0 1 1 1 1 1 1 1 1 1
0 100 200 300 40 e a0 00 falele] el 1000

docs

Figure 12: Precision

7. Conclusion

In conclusion, although this designed IR model doesn’t perform good performance in terms of precision
and precision-recall level. However, it demonstrates a good IR model to create indexes in an efficient

way, and have extremely good performance at query, especially searching time.

In this project, | learn that using tf-idf is not an ideal way to design IR model, since a document with

high query term frequencies doesn’t mean that it's more relevant than other documents.

Another lesson I've learned through this project is that | learn how to improve system performance
while handling with a huge amount of files including reading and writing data, searching a specific item,
and how to create an efficient indexing architecture. A good searching and indexing model can save

hundreds of times while comparing to a poor searching and indexing model.

15

	Table of Contents
	System Environment
	Files in This Zipped File
	Overview
	System Architecture
	Indexing
	Stop words, verb tenses
	Hash table and Inverted Files
	Index of inverted files and boundary index
	Indexing training documents
	Index FBIS3
	Index FBIS3+FBIS4
	FBIS4 increment
	Query
	Query FBIS3
	Query FBIS3+FBIS4
	Evaluation
	Evaluate FBIS3
	Evaluate FBIS3+FBIS4

	Notes for Users
	Experiment Result
	Conclusion

