Lecture 3 Modeling

Ranking

• central problem of IR

- Predict which documents are relevant and which are not

- Ranking
 - Establish an ordering of the documents retrieved
- IR models
 - Different model provides distinct sets of premises to deal with document relevance

Information Retrieval Models

- Classic Models
 - Boolean model
 - set theoretic
 - documents and queries are represented as sets of index terms
 - compare Boolean query statements with the term sets used to identify document content.
 - Vector model
 - algebraic model
 - documents and queries are represented as vectors in a tdimensional space
 - compute global similarities between queries and documents.
 - Probabilistic model
 - probabilistic
 - documents and queries are represented on the basis of probabilistic theory
 - compute the relevance probabilities for the documents of a $_{3-3}$ collection.

Information Retrieval Models

(Continued)

- Structured Models
 - reference to the structure present in written text
 - non-overlapping list model
 - proximal nodes model
- Browsing
 - flat
 - structured guided
 - hypertext

Taxonomy of Information Retrieval Models

Issues of a retrieval system

- Models
 - Boolean
 - vector
 - probabilistic
- Logical views of documents
 - full text
 - set of index terms
- User task
 - retrieval
 - browsing

Combinations of these issues

LOGICAL VIEW OF DOCUMENTS

ſŢ		Index Terms	Full Text	Full Text+ Structure
S E R T A S K	Retrieval	Classic Set Theoretic Algebraic Probabilistic	Classic Set Theoretic Algebraic Probabilistic	Structured
	Browsing	Flat	Flat Hypertext	Structure Guided Hypertext

Retrieval: Ad hoc and Filtering

- Ad hoc retrieval
 - Documents remain relatively static while new queries are submitted
- Filtering
 - Queries remain relatively static while new documents come into the system
 - e.g., news wiring services in the stock market
 - User profile describes the user's preferences
 - Filtering task indicates to the user which document might be interested to him
 - Which ones are really relevant is fully reserved to the user
 - Routing: a variation of filtering
 - Ranking filtered documents and show this ranking to users

User profile

- Simplistic approach
 - The profile is described through a set of keywords
 - The user provides the necessary keywords
- Elaborate approach
 - Collect information from the user
 - initial profile + relevance feedback (relevant information and nonrelevant information)

Formal Definition of IR Models

- /D, Q, F, $R(q_i, d_j)$ /
 - D: a set composed of logical views (or representations) for the documents in collection
 - Q: a set composed of logical views (or representations)
 for the user information needs

query

- F: a framework for modeling documents representations, queries, and their relationships
- $R(q_i, d_j)$: a ranking function which associations a real number with $q_i \in Q$ and $d_j \in D$

Formal Definition of IR Models

(continued)

- classic Boolean model
 - set of documents
 - standard operations on sets
- classic vector model
 - t-dimensional vector space
 - standard linear algebra operations on vector
- classic probabilistic model
 - sets
 - standard probabilistic operations, and Bayes' theorem

Basic Concepts of Classic IR

- index terms (usually nouns): index and summarize
- weight of index terms
- Definition
 - $K = \{k_1, ..., k_t\}$: a set of all index terms
 - $w_{i,j}$: a weight of an index term k_i of a document d_j - $\vec{d}_j = (w_{1,j}, w_{2,j}, ..., w_{t,j})$: an *index term vector* for the
 - document d_j - $g_i(d_i) = w_{i,i}$

 $w_{i,j}$ associated with (k_i,d_j) tells us nothing about $w_{i+1,j}$ associated with (k_{i+1},d_j)

- assumption
 - index term weights are *mutually independent*

The terms *computer* and *network* in the area of computer networks

Boolean Model

Boolean Model

- The index term weight variables are all binary, i.e., w_{i,j} ∈ {0,1}
- A query q is a Boolean expression (and, or, not)
- \vec{q}_{dnf} : the *disjunctive normal form* for q
- \vec{q}_{cc} : conjunctive components of \vec{q}_{dnf}
- $sim(d_j,q)$: similarity of d_j to q- 1: if $\exists \vec{q}_{cc} \mid (\vec{q}_{cc} \in \vec{q}_{dnf} \land (\forall k_i, g_i(\vec{d}_j) = g_i(\vec{q}_{cc}))$ - 0: otherwise

dj is relevant to q

Boolean Model (Continued)

• Example

$$-q = k_a \wedge (k_b \vee \neg k_c)$$

$$= (k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c)$$

$$= (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge k_b \wedge \neg k_c)$$

$$= (k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge \neg k_b \wedge \neg k_c)$$

 $-\vec{q}_{dnf} = (1,1,1) \lor (1,1,0) \lor (1,0,0)$

3-15

Boolean Model (Continued)

- advantage: simple
- disadvantage
 - binary decision (relevant or non-relevant) without grading scale
 - exact match (no partial match)
 - e.g., $\vec{d}_j = (0,1,0)$ is non-relevant to $q = k_a \land (k_b \lor \neg k_c)$
 - retrieve too few or too many documents

Vector Model

Basic Vector Space Model

- *Term vector* representation of documents $D_i = (a_{i1}, a_{i2}, ..., a_{it})$ queries $Q_j = (q_{j1}, q_{j2}, ..., q_{jt})$
- *t* distinct terms are used to characterize content.
- Each term is identified with a term vector *T*.
- *t* vectors are linearly independent.
- Any vector is represented as a linear combination of the *t* term vectors.
- The *r*th document D_r can be represented as a document vector, written as t

$$D_r = \sum_{i=1}^{l} a_{r_i} T_i$$

Document representation in vector space

a document vector in a two-dimensional vector space

Similarity Measure

- measure by product of two vectors $x \cdot y = |x| |y| \cos \alpha$
- document-query similarity

document vector:

$$D_{r} = \sum_{i=1}^{t} a_{ri} T_{i}$$

$$Q_{s} = \sum_{j=1}^{t} q_{sj} T_{j}$$

$$D_{r} \cdot Q_{s} = \sum_{i, j=1}^{t} a_{ri} q_{sj} T_{i} \cdot T_{j}$$

• how to determine the vector components and term correlations?

Similarity Measure (Continued)

• term correlations $T_i \cdot T_j$ are not available assumption: term vectors are orthogonal

$$T_i \bullet T_j = 0 \ (i \neq j) \quad T_i \bullet T_j = 1 \ (i = j)$$

• Assume that terms are uncorrelated.

$$sim(D_r, Q_s) = \sum_{i,j=1}^t a_{r_i} q_{s_j}$$

• Similarity measurement between documents

$$sim(D_r, D_s) = \sum_{i,j=1}^t a_{ri}a_{sj}$$

Sample query-document similarity computation

- $D_1 = 2T_1 + 3T_2 + 5T_3$ $D_2 = 3T_1 + 7T_2 + 1T_3$ $Q = 0T_1 + 0T_2 + 2T_3$
- similarity computations for uncorrelated terms $sim(D_1,Q)=2\cdot0+3\cdot0+5\cdot2=10$ $sim(D_2,Q)=3\cdot0+7\cdot0+1\cdot2=2$
- D₁ is preferred

- similarity computations for correlated terms $sim(D_1,Q)=(2T_1+3T_2+5T_3) \cdot (0T_1+0T_2+2T_3)$ $=4T_1 \cdot T_3+6T_2 \cdot T_3+10T_3 \cdot T_3$ =-6*0.2+10*1=8.8 $sim(D_2,Q)=(3T_1+7T_2+1T_3) \cdot (0T_1+0T_2+2T_3)$ $=6T_1 \cdot T_3+14T_2 \cdot T_3+2T_3 \cdot T_3$ =-14*0.2+2*1=-0.8
- D₁ is preferred

Vector Model

- $w_{i,j}$: a positive, *non-binary weight* for (k_i, d_j)
- $w_{i,q}$: a positive, *non-binary weight* for (k_i,q)
- \$\vec{q}=(w_{1,q}, w_{2,q}, ..., w_{t,q})\$: a query vector, where t is the total number of index terms in the system
- $\vec{d}_j = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$: a document vector

Similarity of document d_i w.r.t. query q

• The correlation between vectors d_i and q

- $|\vec{q}|$ does not affect the ranking
- $|\vec{d_j}|$ provides a normalization

document ranking

- Similarity (i.e., $sim(q, d_i)$) varies from 0 to 1.
- Retrieve the documents with a degree of similarity above a predefined threshold (allow partial matching)

term weighting techniques

- IR problem: one of clustering
 - user query: a specification of a set A of objects
 - clustering problem: determine which documents are in the set A (*relevant*), which ones are not (*non-relevant*)
 - intra-cluster similarity
 - the features better describe the objects in the set A
 - tf factor in vector model the raw frequency of a term k_i inside a document d_i
 - inter-cluster dissimilarity
 - the features better distinguish the the objects in the set A from the remaining objects in the collection C
 - idf factor (inverse document frequency) in vector model the inverse of the frequency of a term k_i among the documents in the collection 3-28

Definition of *tf*

- N: total number of documents in the system
- n_i: the number of documents in which the index term k_i appears
- freq_{i,j}: the raw frequency of term k_i in the document d_j (0~1)
- $f_{i,j}$: the *normalized frequency* of term k_i in document d_j

$$f_{i,j} = \frac{f_{i,j}}{\max_l freq_{l,j}}$$
Term t_l has maximum frequency
in the document d_j 3-29

Definition of *idf* and *tf-idf* scheme

• idf_i: inverse document frequency for k_i

$$idf_i = \log \frac{N}{n_i}$$

- $w_{i,j}$: term-weighting by *tf-idf* scheme $w_{i,j} = f_{i,j} \times \log \frac{N}{n_i}$
- *query term* weight (Salton and Buckley)

(a very short document) $w_{i,q} = (0.5 + \frac{0.5 freq_{i,q}}{\max_l freq_{i,q}}) \times \log \frac{N}{n_i}$

freq_{i,q}: the raw frequency of the term k_i in q

Analysis of vector model

- advantages
 - its *term-weighting* scheme improves *retrieval performance*
 - its *partial matching* strategy allows retrieval of documents that *approximate* the query conditions
 - its *cosine ranking* formula sorts the documents according to their *degree of similarity* to the query
- disadvantages
 - indexed terms are assumed to be *mutually independently*

Probabilistic Model

Probabilistic Model

- Given a query, there is an *ideal answer set*
 - a set of documents which contains exactly the relevant documents and no other
- query process
 - a process of specifying *the properties* of an ideal answer set
- problem: what are the properties?

Probabilistic Model (Continued)

- Generate a preliminary probabilistic description of the ideal answer set
- Initiate an interaction with the user
 - User looks at the retrieved documents and decide which ones are relevant and which ones are not
 - System uses this information to refine the description of the ideal answer set
 - Repeat the process many times.

Probabilistic Principle

- Given a *user query* q and a *document* d_j in the collection, the probabilistic model estimates the probability that user will find d_j relevant
- assumptions
 - The probability of relevance depends on query and document representations only
 - There is a subset of all documents which the user prefers as the answer set for the query q
- Given a query, the probabilistic model assigns to each document dj a measure of its similarity to the query $P(d_j relevant - to q)$

$$P(d_j \text{ nonrelevant} - to q)$$
 3-35

Probabilistic Principle

- $w_{i,j} \in \{0,1\}, w_{i,q} \in \{0,1\}$: the index term weight variables are all binary non-relevant
- q: a query which is a subset of index terms
- R: the set of documents known to be *relevant*
- $\overline{\mathbf{R}}$ (complement of R): the set of *non-relevant* documents
- $P(R|d_j)$: the probability that the document d_j is *relevant* to the query q
- $P(\overline{R}|\overline{d_j})$: the probability that d_j is *non-relevant* to q
similarity

 sim(d_j,q): the similarity of the document d_j to the query q

$$sim(d_{j},q) = \frac{P(R \mid \overline{d_{j}})}{P(\overline{R} \mid \overline{d_{j}})}$$
$$sim(d_{j},q) = \frac{P(\overline{d_{j}} \mid R) \times P(R)}{P(\overline{d_{j}} \mid \overline{R}) \times P(\overline{R})}$$
$$sim(d_{j},q) \approx \frac{P(\overline{d_{j}} \mid R)}{P(\overline{d_{j}} \mid \overline{R})}$$

(by definition)

(Bayes' rule)
$$P(X | Y) = \frac{P(X)P(Y | X)}{P(Y)}$$

(P(R) and P(R) are the same for all documents)

 $P(\vec{d}_j | R)$: the probability of randomly selecting the document d_j from the set of R of relevant documents P(R): the probability that a document randomly selected from the entire collection is relevant

$$sim(d_{j},q) \approx \frac{P(\overrightarrow{d_{j}} \mid R)}{P(\overrightarrow{d_{j}} \mid \overline{R})}$$

$$= \log \frac{\prod_{i=1}^{t} (P(k_{i} \mid R))^{g_{i}(\overrightarrow{d_{j}})g_{i}(\overrightarrow{q})} \times (P(\overrightarrow{k}_{i} \mid R))^{1-g_{i}(\overrightarrow{d_{j}})g_{i}(\overrightarrow{q})}}{\prod_{i=1}^{t} (P(k_{i} \mid \overline{R}))^{g_{i}(\overrightarrow{d_{j}})g_{i}(\overrightarrow{q})} \times (P(\overrightarrow{k}_{i} \mid \overline{R}))^{1-g_{i}(\overrightarrow{d_{j}})g_{i}(\overrightarrow{q})}} \qquad \text{independent index terms inde$$

independence assumption of index terms

3-38

$$\begin{split} sim(d_{j},q) &\approx \frac{P(\overrightarrow{d_{j}} \mid R)}{P(\overrightarrow{d_{j}} \mid \overline{R})} \\ &= \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) g_{i}(\overrightarrow{q}) \times \log \frac{P(k_{i} \mid R) \times (1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R}) \times (1 - P(k_{i} \mid R))} + \sum_{i=1}^{t} \log \frac{P(\overline{k}_{i} \mid R)}{P(\overline{k}_{i} \mid \overline{R})} \\ &= \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) g_{i}(\overrightarrow{q}) \times (\log \frac{P(k_{i} \mid R)}{(1 - P(k_{i} \mid R))}) + \log \frac{(1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R})}) + \sum_{i=1}^{t} \log \frac{P(\overline{k}_{i} \mid R)}{P(\overline{k}_{i} \mid \overline{R})} \\ &\approx \sum_{i=1}^{t} g_{i}(\overrightarrow{d_{j}}) g_{i}(\overrightarrow{q}) \times (\log \frac{P(k_{i} \mid R)}{(1 - P(k_{i} \mid R))}) + \log \frac{(1 - P(k_{i} \mid \overline{R}))}{P(k_{i} \mid \overline{R})}) \end{split}$$

Problem: where is the set R?

Initial guess

• $P(k_i|R)$ is constant for all index terms k_i .

 $p(k_i | R) = 0.5$

• The distribution of index terms among the non-relevant documents can be approximated by the distribution of index terms among all the documents in the collection. $P(k \mid \overline{R}) = \frac{n_i}{n_i}$

$$P(k_i | \overline{R}) = \frac{n_i}{N}$$

(假設N>>|R|,N≈|R|)

Initial ranking

- V: a subset of the documents initially retrieved and ranked by the probabilistic model (*top r documents*)
- V_i : subset of V composed of documents which contain the index term k_i
- Approximate $P(k_i|R)$ by the distribution of the index term k_i among the documents retrieved so far. $P(k_i|R) = \frac{V_i}{V_i}$
- far. • Approximate $P(k_i | R) = \frac{V_i}{V}$ • Approximate $P(k_i | R)$ by considering that all the non-retrieved documents are not relevant.

$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V}$$

Small values of V and V_i

$$P(k_i \mid R) = \frac{V_i}{V}$$
$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V}$$

a problem when V=1 and $V_i=0$

3-42

• alternative 1

$$P(k_i \mid R) = \frac{V_i + 0.5}{V + 1}$$
$$P(k_i \mid \overline{R}) = \frac{n_i - V_i + 0.5}{N - V + 1}$$

• alternative 2

$$P(k_i \mid R) = \frac{V_i + \frac{n_i}{N}}{V + 1}$$

$$P(k_i \mid \overline{R}) = \frac{n_i - V_i + \frac{n_i}{N}}{N - V + 1}$$

Probabilistic Model

- -Q: "gold silver truck"
 - D1: "Shipment of gold damaged in a fire"
 - D2: "Delivery of silver arrived in a silver truck"
 - D3: "Shipment of gold arrived in a truck"
- -IDF (Select Keywords)
 - $a = in = of = 0 = log^{3/3}$ arrived = gold = shipment = truck = 0.176 = log^{3/2} damaged = delivery = fire = silver = 0.477 = log^{3/1}
- -8 Keywords (Dimensions) are selected
 - arrived(1), damaged(2), delivery(3), fire(4), gold(5), silver(6), shipment(7), truck(8)

Probabilistic Model

• Initial Guess

$$P(k_i | \overline{R}) = 0.5$$

$$P(k_i | \overline{R}) = \frac{N_i}{N} (N = 3)$$

$$Sim(d_i, q) = \sum_{i=1}^{t} g_i(d_i) \times g_i(q) \times \log(\frac{P(k_i | \overline{R}) \times (1 - P(k_i | \overline{R}))}{P(k_i | \overline{R}) \times (1 - P(k_i | \overline{R}))}) (t = 8)$$

- . .

Sim(d₁, q) = log(
$$\frac{0.5 \times \frac{1}{3}}{\frac{2}{3} \times 0.5}$$
) = log($\frac{1}{2}$) = -log² = -0.30103

 $Sim(d_2,q)=0$

 $Sim(d_3, q) = -2 \times \log^2 = -0.60206$ $Sim(d_2, q) > Sim(d_1, q) > Sim(d_3, q)$

Probabilistic Model

Interaction with User?
 – Relevance Feedback

• How many documents need to be retrieved?

No Interaction with User

• Retrieve 1 Document: d2 (relevant)

$$V = 1 \quad \& \quad N = 3$$

$$P(k_i | R) = \frac{V_i + 0.5}{V + 1}$$

$$P(k_i | \overline{R}) = \frac{N_i - V_i + 0.5}{N - V + 1} \quad (N = 3)$$

$$Sim(d_i, q) = \sum_{i=1}^{t} g_i(d_i) \times g_i(q) \times \log(\frac{P(k_i | R) \times (1 - P(k_i | \overline{R}))}{P(k_i | \overline{R}) \times (1 - P(k_i | R))}) \quad (t = 8)$$

	1	2	3	4	5	б	7	8
V_i	1	0	1	0	0	1	0	1
$\mathbf{N}_{\mathbf{i}}$	2	1	1	1	2	1	2	2

$$\operatorname{Sim}(d_1, q) = \log(\frac{\frac{0.5}{2} \times \frac{0.5}{3}}{\frac{2.5}{3} \times \frac{1.5}{2}}) = -(\log^5 + \log^3) = -1.17609$$

$$Sim(d_2, q) = 2 \times \log^3 + \log^5 = 1.65321$$

$$Sim(d_3, q) = -\log^5 = -0.69897$$

 $Sim(d_2, q) > Sim(d_3, q) > Sim(d_1, q)$

No Interaction with User

• Retrieve 2 Documents: d2 (relevant) & d1

$$V = 2 \quad \& \quad N = 3$$

$$P(k_{i} | R) = \frac{V_{i} + 0.5}{V + 1}$$

$$P(k_{i} | \overline{R}) = \frac{N_{i} - V_{i} + 0.5}{N - V + 1} \quad (N = 3)$$

$$Sim(d_{i}, q) = \sum_{i=1}^{t} g_{i}(d_{i}) \times g_{i}(q) \times \log\left(\frac{P(k_{i} | R) \times (1 - P(k_{i} | \overline{R}))}{P(k_{i} | \overline{R}) \times (1 - P(k_{i} | R))}\right) \quad (t = 8)$$

	1	2	3	4	5	6	7	8
V_i	1	1	1	1	1	1	1	1
\mathbf{N}_{i}	2	1	1	1	2	1	2	2

Sim(d₁, q) = log(
$$\frac{\frac{0.5}{2} \times \frac{1.5}{3}}{\frac{1.5}{3} \times \frac{1.5}{2}}$$
) = -log³ = -0.47712

 $Sim(d_2,q)=0$

$$Sim(d_3, q) = -2 \times \log^3 = -0.95424$$

 $Sim(d_2, q) > Sim(d_1, q) > Sim(d_3, q)$

No Interaction with User

• Retrieve 3 Documents: d2, d1 (non-relevant) &d3

$$V = S \quad \text{all } N = S \quad \text{all } V_i = N_i$$

$$P(\mathbf{k}_i \mid \mathbf{R}) = \frac{V_i + 0.5}{V + 1}$$

$$P(\mathbf{k}_i \mid \mathbf{R}) = \frac{N_i - V_i + 0.5}{N \cdot V + 1} \quad (N = 3)$$

$$Sim(\mathbf{d}_i, \mathbf{q}) = \sum_{i=1}^{t} g_i(\mathbf{d}_i) \times g_i(\mathbf{q}) \times \log\left(\frac{P(\mathbf{k}_i \mid \mathbf{R}) \times (1 \cdot P(\mathbf{k}_i \mid \mathbf{\overline{R}}))}{P(\mathbf{k}_i \mid \mathbf{\overline{R}}) \times (1 \cdot P(\mathbf{k}_i \mid \mathbf{R}))}\right) \quad (t = 8)$$

 $\mathbf{V} = \mathbf{N}$

	1	2	3	4	5	6	7	8
V_i	2	1	1	1	2	1	2	2
\mathbf{N}_{i}	2	1	1	1	2	1	2	2

Sim(d₁, q) = log
$$(\frac{\frac{0.5}{2} \times \frac{1.5}{3}}{\frac{1.5}{3} \times \frac{1.5}{2}}) = -\log^3 = -0.47712$$

 $Sim(d_2,q) = 0$ $Sim(d_3,q) = 2 \times (\log^5 - \log^3) = 0.44370$ $Sim(d_3,q) > Sim(d_1,q) > Sim(d_2,q) \longrightarrow We need to interact with 348er.$

Interaction with User

• Retrieve 2 Documents: d2 & d1 (non-relevant)

N = # of documents in the collection
n = # of documents indexed by a given term
R = # of relevant documents
r = # of relevant documents indexed by the given term

$$P(\mathbf{k}_{i} | \mathbf{R}) = \frac{\mathbf{r}}{\mathbf{R}}$$

$$P(\mathbf{k}_{i} | \overline{\mathbf{R}}) = \frac{\mathbf{n}}{\mathbf{N}} (\mathbf{N} = \mathbf{3})$$

$$P(\mathbf{k}_{i} | \mathbf{R}) = \frac{\mathbf{r} + \mathbf{0.5}}{\mathbf{R} + \mathbf{1}}$$

$$P(\mathbf{k}_{i} | \overline{\mathbf{R}}) = \frac{\mathbf{n} + \mathbf{1}}{\mathbf{N} + \mathbf{2}} (\mathbf{N} = \mathbf{3})$$

$$\operatorname{Sim}(\underline{d}_{i}, q) = \sum_{i=1}^{t} g_{i}(\underline{d}_{i}) \times g_{i}(q) \times \log\left(\frac{P(\underline{k}_{i} | R) \times (1 - P(\underline{k}_{i} | \overline{R}))}{P(\underline{k}_{i} | \overline{R}) \times (1 - P(\underline{k}_{i} | R))}\right) \quad (t = 8)$$

Interaction with User

• Alternative 2

$$P(k_i | R) = \frac{r+0.5}{R+1}$$
$$P(k_i | \overline{R}) = \frac{n-r+0.5}{N-R+1}$$

• Alternative 3

$$P(k_i | R) = \frac{r+0.5}{R-r+0.5}$$
$$P(k_i | \overline{R}) = \frac{n+1}{N-n+1}$$

• Alternative 4

$$P(k_i | R) = \frac{r + 0.5}{R - r + 0.5}$$
$$P(k_i | \overline{R}) = \frac{n - r + 0.5}{(N - n) - (R - r) + 0.5}$$

Interaction with User

$$\operatorname{Sim}(d_1, q) = \log(\frac{\frac{0.5}{2} \times \frac{2}{5}}{\frac{3}{5} \times \frac{1.5}{2}}) = \log^{\frac{2}{9}} = -0.65321$$

$$\operatorname{Sim}(d_{2}, q) = \log(\frac{\frac{1.5}{2} \times \frac{3}{5}}{\frac{2}{5} \times \frac{0.5}{2}}) + \log(\frac{\frac{1.5}{2} \times \frac{2}{5}}{\frac{3}{5} \times \frac{0.5}{2}}) = \log^{9} = 0.95424$$

$$\operatorname{Sim}(d_{3}, q) = \log(\frac{\frac{0.5}{2} \times \frac{2}{5}}{\frac{3}{5} \times \frac{1.5}{2}}) + \log(\frac{\frac{1.5}{2} \times \frac{2}{5}}{\frac{3}{5} \times \frac{0.5}{2}}) = \log^{\frac{4}{9}} = -0.35218$$

 $Sim(d_2, q) > Sim(d_3, q) > Sim(d_1, q)$ 3-51

Analysis of Probabilistic Model

- advantage
 - documents are ranked in decreasing order of their probability of being relevant
- disadvantages
 - the need to guess the initial separation of documents into relevant and non-relevant sets
 - do not consider the frequency with which an index terms occurs inside a document
 - the independence assumption for index terms

Comparison of classic models

- Boolean model: the weakest classic model
- Vector model is expected to outperform the probabilistic model with general collections (Salton and Buckley)

Okapi at TREC3 and TREC4

SE Robertson, S Walker, S Jones, MM Hancock-Beaulieu, M Gatford Department of Information Science City University

$$sim(d_j, q) \approx \frac{P(\overrightarrow{d_j} \mid R)}{P(\overrightarrow{d_j} \mid \overline{R})}$$

$$\approx \sum_{i=1}^{t} g_i(\overrightarrow{d_j}) g_i(\overrightarrow{q}) \times \log \frac{P(k_i \mid R) \times (1 - P(k_i \mid R))}{P(k_i \mid \overline{R}) \times (1 - P(k_i \mid R))}$$

$$\begin{split} P(k_i \mid R) &= \frac{V_i + 0.5}{V + 1} & 1 - P(k_i \mid R) = 1 - \frac{V_i + 0.5}{V + 1} = \frac{V - V_i + 0.5}{V + 1} \\ P(k_i \mid \overline{R}) &= \frac{n_i - V_i + 0.5}{N - V + 1} & 1 - P(k_i \mid \overline{R}) = 1 - \frac{n_i - V_i + 0.5}{N - V + 1} = \frac{N - V - n_i + V_i + 0.5}{N - V + 1} \end{split}$$

$$sim(d_{j},q) \approx \log \frac{\frac{V_{i}+0.5}{V+1} \times \frac{N-V-n_{i}+V_{i}+0.5}{N-V+1}}{\frac{n_{i}-V_{i}+0.5}{N-V+1} \times \frac{V-V_{i}+0.5}{V+1}}$$
$$= \log \frac{(V_{i}+0.5) \times (N-V-n_{i}+V_{i}+0.5)}{(n_{i}-V_{i}+0.5) \times (V-V_{i}+0.5)}$$
3-55

BM25 function in Okapi $\sum_{T \in Q} w^{(1)} \frac{(k_1 + 1)tf}{K + tf} \frac{(k_3 + 1)qtf}{k_3 + qtf} + k_2 \left[\begin{array}{c} Q \\ Q \\ avdl + dl \end{array} \right]$ $\underset{\text{used for long query}}{\text{avdl + dl}} \quad (1)$ Q: a query, containing terms T w⁽¹⁾: Robertson-Sparck Jones weight $log \frac{(r+0.5)\times(N-n-R+r+0.5)}{(n-r+0.5)\times(R-r+0.5)} = \frac{(k_2+1)qtf}{k_2+qtf}$ N: the number of documents in the collection (note: N) n: the number of documents containing the term (note: n_i) R: the number of documents known to be relevant to a specific topic (note: V) r: the number of relevant documents containing the term (note: V_i) K: $k_1((1-b)+b*dl/avdl)$ $k_1=0$: binary model (no term frequency); $k_1=large$ value (using raw term frequency); b=1 (fully scaling the term weight by document length); b=0 (no length normalization) k_1 , b, k_2 and k_3 : parameters depend on the database and nature of topics in TREC4 experiments, k_1 , k_3 and b were 1.0-2.0, 8 and 0.6-0.75, respectively., and k_2 was zero throughout tf: frequency of occurrence of the term within a specific document (note: k_i) qtf: the frequency of the term within the topic from which Q was derived dl: document length 3-56 avdl: average document length

Fuzzy Set Model

Alternative Set Theoretic Models -Fuzzy Set Model

- Model
 - a query term: a fuzzy set
 - a document: degree of membership in this set
 - membership function
 - Associate membership function with the elements of the class
 - 0: no membership in the set
 - 1: full membership

documents

• 0~1: marginal elements of the set

Fuzzy Set Theory

a class

- A fuzzy subset A of a universe of discourse U is characterized by a membership function $\mu_A: U \rightarrow [0,1]$ which associates with each element u of U a number $\mu_A(u)$ in the interval $[0,1]^{\downarrow}$
 - complement: $\mu_{\overline{A}}(u) = 1 \mu_A(u)$
 - union: $\mu_{A\cup B}(u) = \max(\mu_A(u), \mu_B(u))$
 - intersection: $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$

Examples

- Assume U={ $d_1, d_2, d_3, d_4, d_5, d_6$ }
- Let A and B be {d₁, d₂, d₃} and {d₂, d₃, d₄}, respectively.
- Assume $\mu_A = \{d_1:0.8, d_2:0.7, d_3:0.6, d_4:0, d_5:0, d_6:0\}$ and $\mu_B = \{d_1:0, d_2:0.6, d_3:0.8, d_4:0.9, d_5:0, d_6:0\}$
- $\mu_{\overline{A}}(u) = 1 \mu_{A}(u) = \{d_1: 0.2, d_2: 0.3, d_3: 0.4, d_4: 1, d_5: 1, d_6: 1\}$
- $\mu_{A\cup B}(u) = \max(\mu_A(u), \mu_B(u)) = \{d_1:0.8, d_2:0.7, d_3:0.8, d_4:0.9, d_5:0, d_6:0\}$
- $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u)) = \{d_1:0, d_2:0.6, d_3:0.6, d_4:0, d_5:0, d_6:0\}$

Fuzzy AND

Fuzzy OR

Fuzzy NOT

Fuzzy Information Retrieval

- basic idea
 - Expand the set of index terms in the query with related terms (from the thesaurus) such that additional relevant documents can be retrieved
 - A thesaurus can be constructed by defining a term-term correlation matrix \vec{c} whose rows and columns are associated to the index terms in the document collection

keyword connection matrix

Fuzzy Information Retrieval

 normalized correlation factor c_{i,1} between two terms k_i and k₁ (0~1)

 $c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}} \text{ where } \begin{cases} n_i \text{ is } \# \text{ of documents containing term } k_i \\ n_l \text{ is } \# \text{ of documents containing term } k_l \\ n_{i,l} \text{ is } \# \text{ of documents containing } k_i \text{ and } k_l \end{cases}$

• In the fuzzy set associated to each index term k_i , a document d_j has a degree of membership $\mu_{i,j}$

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

Fuzzy Information Retrieval

- physical meaning
 - A document d_j belongs to the fuzzy set associated to the term k_i if its own terms are related to k_i , i.e., $\mu_{i,j}=1$.
 - If there is at least one index term k_1 of d_j which is strongly related to the index k_i , then $\mu_{i,j} \sim 1$. k_i is a good fuzzy index
 - When all index terms of d_j are only loosely related to k_i , $\mu_{i,j} \sim 0$.

k_i is not a good fuzzy index

Example

• $q=(k_a \wedge (k_b \vee \neg k_c))$ = $(k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge \neg k_b \wedge \neg k_c)$ = $cc_1+cc_2+cc_3$

- D_a : the fuzzy set of documents associated to the index k_a
- $d_j \in D_a$ has a degree of membership $\mu_{a,j} > a$ predefined threshold K
- \overline{D}_a : the fuzzy set of documents associated to the index $\overline{k_a}$ (the negation of index term k_a)

Example

Query q= $k_a \land (k_b \lor \neg k_c)$

disjunctive normal form $\overrightarrow{q_{dnf}} = (1,1,1) \lor (1,1,0) \lor (1,0,0)$

(1) the degree of membership in a disjunctive fuzzy set is computed using an algebraic sum *(instead of max function) more smoothly*(2) the degree of membership in a conjunctive fuzzy set is computed using an algebraic product *(instead of min function) more smoothly*

$$\mu_{q,j} = \mu_{cc1+cc2+cc3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}\mu_{b,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{b,j})(1 - \mu_{c,j}))$$

Fuzzy Set Model

- -Q: "gold silver truck"
 - D1: "Shipment of gold damaged in a fire"
 - D2: "Delivery of silver arrived in a silver truck"
 - D3: "Shipment of gold arrived in a truck"
- -IDF (Select Keywords)

•
$$a = in = of = 0 = \log \frac{3}{3}$$

arrived = gold = shipment = truck = $0.176 = \log \frac{3}{2}$ damaged = delivery = fire = silver = $0.477 = \log \frac{3}{1}$

- -8 Keywords (Dimensions) are selected
 - arrived(1), damaged(2), delivery(3), fire(4), gold(5), silver(6), shipment(7), truck(8)

$$\begin{array}{l} Fuzzy \ Set \ Model \\ \mu_{gold,d1} = 1 - \prod_{k_{1} \in d_{1}} (1 - C_{gold,k_{1}}) \\ = 1 - (1 - C_{gold,shipment}) * (1 - C_{gold,gold}) * (1 - C_{gold,damaged}) * (1 - C_{gold,fire}) \\ = 1 - (1 - \frac{2}{2 + 2 - 2}) * (1 - \frac{1}{2 + 1 - 1}) * (1 - \frac{2}{2 + 2 - 2}) * (1 - \frac{2}{2 + 1 - 1}) \\ = 1 - (1 - \frac{2}{2 + 2 - 2}) * (1 - \frac{1}{2 + 1 - 1}) * (1 - \frac{2}{2 + 2 - 2}) * (1 - \frac{2}{2 + 1 - 1}) \\ = 1 - 0 * \frac{1}{2} * 0 * \frac{1}{2} \\ = 1 \\ \mu_{silver,d1} = 1 - 1 * 1 * 1 * 1 = 0 \\ \mu_{truck,d1} = 1 - \prod_{k_{1} \in d_{1}} (1 - C_{truck,k_{1}}) \\ = 1 - (1 - C_{truck,shipment}) * (1 - C_{truck,gold}) * (1 - C_{truck,damaged}) * (1 - C_{truck,fire}) \\ = 1 - (1 - \frac{1}{2 + 2 - 1}) * (1 - \frac{1}{2 + 2 - 1}) * (1 - \frac{0}{2 + 1 - 0}) * (1 - \frac{0}{2 + 1 - 0}) \\ = 1 - \frac{2}{3} * \frac{2}{3} * 1 * 1 \\ = \frac{5}{9} \end{array}$$

3-70

Fuzzy Set Model

 $\mu_{\text{gold}, d2} = 1 - 1 * 1 * \frac{2}{3} * \frac{2}{3} = \frac{5}{9}$ $\mu_{\text{silver}, d2} = 1$ $\mu_{\text{truck}, d2} = 1$

$$\begin{split} \mu_{\text{gold, d3}} &= 1 \\ \mu_{\text{silver, d3}} &= 1 - 1 * 1 * \frac{1}{2} * \frac{1}{2} = \frac{3}{4} \\ \mu_{\text{truck, d3}} &= 1 \end{split}$$

Fuzzy Set Model

• Sim(q,d): Alternative 1 $\mu_{q,d1} = \mu_{gold^{\wedge}silver^{\wedge}truck,d1} = \mu_{gold,d1} * \mu_{silver,d1} * \mu_{truck,d1} = 0$ $\mu_{q,d2} = \mu_{gold^{\wedge}silver^{\wedge}truck,d1} = \mu_{gold,d2} * \mu_{silver,d2} * \mu_{truck,d2} = \frac{5}{9}$ $\mu_{q,d3} = \mu_{gold^{\wedge}silver^{\wedge}truck,d1} = \mu_{gold,d3} * \mu_{silver,d3} * \mu_{truck,d3} = \frac{3}{4}$

 $Sim(q,d_3) > Sim(q,d_2) > Sim(q,d_1)$

• Sim(q,d): Alternative 2 $\mu_{q,d1} = \mu_{gold^{silver^{truck,d1}}} = \min(\mu_{gold,d1}, \mu_{silver,d1}, \mu_{truck,d1}) = 0$ $\mu_{q,d2} = \mu_{gold^{silver^{truck,d1}}} = \min(\mu_{gold,d2}, \mu_{silver,d2}, \mu_{truck,d2}) = \frac{5}{9}$

$$\mu_{q,d3} = \mu_{gold^{silver^{truck},d1}} = \min(\mu_{gold,d3},\mu_{silver,d3},\mu_{truck,d3}) = \frac{3}{4}$$

 $Sim(q,d_3) > Sim(q,d_2) > Sim(q,d_1)$
Generalized Vector Space Model

Alternative Algebraic Model: Generalized Vector Space Model

- independence of index terms
 - $-\vec{k_i}$: a vector associated with the index term k_i
 - the set of vectors $\{k_1, k_2, ..., k_t\}$ is linearly independent
 - orthogonal: $\vec{k}_i \bullet \vec{k}_j = 0$ for $i \neq j$
 - **Theorem:** If the nonzero vectors **k**1, **k**2, · · · , **k***n* are orthogonal, then they are linearly independent.
 - The index term vectors are assumed linearly independent but are not pairwise orthogonal in generalized vector space model
 - The index term vectors, which are not seen as the basis of the space, are composed of *smaller components* derived from the particular collection.

Review

- Two vectors u and v are linearly independent – if $\alpha u+\beta v=0$ then $\alpha=\beta=0$
- Two vectors u and v are orthogonal, I.e, θ =90° - u•v=0 (I.e., u^Tv=0)
- if two vectors u and v are orthogonal, then u and v are linearly independent

- assume $\alpha u+\beta v=0$, $u\neq 0$ and $v\neq 0$

 $- u^{T}(\alpha u + \beta v) = 0 --> \alpha u^{T}u + \beta u^{T} v = 0 --> \alpha u^{T}u = 0$

Generalized Vector Space Model

- $\{k_1, k_2, ..., k_t\}$: index terms in a collection
- $w_{i,j}$: binary weights associated with the term-document pair $\{k_i, d_j\}$
- The patterns of term *co-occurrence* (inside documents) can be represented by a set of 2^t *minterms*

 $m_1=(0, 0, ..., 0)$: point to documents containing none of index terms $m_2=(1, 0, ..., 0)$: point to documents containing the index term k_1 only $m_3=(0,1,...,0)$: point to documents containing the index term k_2 only $m_4=(1,1,...,0)$: point to documents containing the index terms k_1 and k_2

 $m_2^t = (1, 1, ..., 1)$: point to documents containing all the index terms

• $g_i(m_j)$: return the weight {0,1} of the index term k_i in the minterm m_j ($1 \le i \le t$)

Generalized Vector Space Model

(*Continued*)

 $\vec{m}_1 = (1,0,...,0,0)$ $\vec{m}_2 = (0,1,...,0,0)$

$$\vec{m}_i \bullet \vec{m}_j = 0 \text{ for } i \neq j$$

 $\vec{m}_{2^t} = (0,0,...,0,1)$ (the set of \vec{m}_i are pairwise orthogonal)

- $\vec{m_i}$ (2^t-tuple vector) is associated with minterm m_i (t-tuple vector)
- e.g., \vec{m}_4 is associated with m_4 containing k_1 and k_2 , and no others
- co-occurrence of index terms inside documents: dependencies among index terms

$$\begin{split} & \underset{m_{1}=(0,0,0)}{\text{minterm } m_{r}} \quad \overrightarrow{m}_{r} \text{ vector} & d1 (k1) & d11 (k1 k2) \\ & \underset{m_{1}=(0,0,0)}{\text{minis}} \quad \overrightarrow{m}_{1}=(1,0,0,0,0,0,0) & d2 (k3) & d12 (k1 k3) \\ & \underset{m_{2}=(0,0,1)}{\text{minis}} \quad \overrightarrow{m}_{2}=(0,1,0,0,0,0,0) & d3 (k3) & d13 (k1 k2) \\ & \underset{m_{3}=(0,1,0)}{\text{minis}} \quad \overrightarrow{m}_{3}=(0,0,1,0,0,0,0) & d4 (k1) & d14 (k1 k2) \\ & \underset{m_{4}=(0,1,1)}{\text{minis}} \quad \overrightarrow{m}_{4}=(0,0,0,1,0,0,0) & d5 (k2) & d15 (k1 k2 k3) \\ & \underset{m_{5}=(1,0,0)}{\text{minis}} \quad \overrightarrow{m}_{5}=(0,0,0,0,1,0,0) & d6 (k2) & d16 (k1 k2) \\ & \underset{m_{6}=(1,0,1)}{\text{minis}} \quad \overrightarrow{m}_{6}=(0,0,0,0,0,0,0) & d7 (k2 k3) & d17 (k1 k2) \\ & \underset{m_{7}=(1,1,0)}{\text{minis}} \quad \overrightarrow{m}_{7}=(0,0,0,0,0,0,0,0) & d8 (k2 k3) & d18 (k1 k2) \\ & \underset{m_{8}=(1,1,1)}{\text{minis}} \quad \overrightarrow{m}_{8}=(0,0,0,0,0,0,0,0) & d9 (k2) & d19 (k1 k2 k3) \\ & \overrightarrow{k}_{1} = \frac{\overrightarrow{c_{1,5}m_{5} + c_{1,6}m_{6} + c_{1,7}m_{7} + c_{1,8}m_{8}}{\sqrt{c_{1,5}^{2} + c_{1,6}^{2} + c_{1,7}^{2} + c_{1,8}^{2}}} \\ & c_{1,5} = w_{1,1} + w_{1,4} & c_{1,6} = w_{1,12} \\ & c_{1,7} = w_{1,11} + w_{1,13} + w_{1,14} + w_{1,16} + w_{1,17} + w_{1,18} + w_{1,20} \\ & c_{1,8} = w_{1,15} + w_{1,19} \end{aligned}$$

$$\vec{k}_{2} = \frac{\vec{k}_{2,3}\vec{k}_{3} + c_{2,4}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,7}\vec{k}_{4} + c_{2,17} + w_{2,18} + w_{2,20}$$

$$\vec{k}_{3} = \frac{\vec{c}_{3,2}\vec{m}_{2} + c_{3,4}\vec{m}_{4} + c_{3,6}\vec{m}_{6} + c_{3,8}\vec{m}_{8}}{\sqrt{c_{3,2}^{2} + c_{3,4}^{2} + c_{3,6}^{2} + c_{3,8}^{2}}}$$

 $c_{3,2} = w_{3,2} + w_{3,3}$ $c_{3,4} = w_{3,7} + w_{3,8} + w_{3,10}$ $c_{3,6} = w_{3,12}$

$$c_{3,8} = w_{3,15} + w_{3,19}$$
 3-80

Generalized Vector Space Model

• Determine the index vector k_i associated with the index term k_i

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r})=1} \vec{c}_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r})=1} \vec{c}_{i,r}^{2}}}$$

Collect all the vectors \vec{m}_r in which the index term k_i is in state 1.

$$C_{i,r} = \sum_{\substack{d_j \mid g_l(\vec{d}_j) = g_l(m_r) \text{ for all } l}} W_{i,j}$$

Sum up $w_{i,j}$ associated with the index term k_i and document d_j whose term occurrence pattern coincides with minterm m_r

Generalized Vector Space Model

(*Continued*)

 k_i•k_j quantifies a degree of correlation between k_i and k_i

$$\vec{k}_i \bullet \vec{k}_j = \sum_{\forall r \mid g_i(m_r) = 1 \land g_j(m_r) = 1} c_{i,r} \times c_{j,r}$$

• standard cosine similarity is adopted

$$\vec{d}_{j} = \sum_{\forall i} w_{i,j} \vec{k}_{i} \quad \vec{q} = \sum_{\forall i} w_{i,q} \vec{k}_{i}$$

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r})=1} \vec{c}_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r})=1} \vec{c}_{i,r}^{2}}}$$

$$\vec{k}_{1} = \frac{c_{1,5}\vec{m}_{5} + c_{1,6}\vec{m}_{6} + c_{1,7}\vec{m}_{7} + c_{1,8}\vec{m}_{8}}{\sqrt{c_{1,5}^{2} + c_{1,6}^{2} + c_{1,7}^{2} + c_{1,8}^{2}}}$$

$$\vec{k}_{2} = \frac{c_{2,3}\vec{m}_{3} + c_{2,4}\vec{m}_{4} + c_{2,7}\vec{m}_{7} + c_{2,8}\vec{m}_{8}}{\sqrt{c_{2,3}^{2} + c_{2,4}^{2} + c_{2,7}^{2} + c_{2,8}^{2}}}$$

$$\vec{k}_{3} = \frac{c_{3,2}\vec{m}_{2} + c_{3,4}\vec{m}_{4} + c_{3,6}\vec{m}_{6} + c_{3,8}\vec{m}_{8}}{\sqrt{c_{3,2}^{2} + c_{3,4}^{2} + c_{3,6}^{2} + c_{3,8}^{2}}}$$

$$\vec{k}_{1} \cdot \vec{k}_{2} = (c_{1,7} \times c_{2,7} + c_{1,8} \times c_{2,8})/$$

$$(\sqrt{c_{1,5}^{2} + c_{1,6}^{2} + c_{1,7}^{2} + c_{1,8}^{2}} \times \sqrt{c_{2,3}^{2} + c_{2,4}^{2} + c_{2,7}^{2} + c_{2,8}^{2}})$$

$$\vec{k}_{1} \cdot \vec{k}_{3} = (c_{1,6} \times c_{3,6} + c_{1,8} \times c_{3,8})/...$$

$$\vec{k}_{2} \cdot \vec{k}_{3} = (c_{2,4} \times c_{3,4} + c_{2,8} \times c_{3,8})/...$$

$$^{3\cdot83}$$

Latent Semantic Indexing Model

Vector Space Model: Pros

- Automatic selection of index terms
- **Partial matching** of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- **Term weighting** schemes (*improves retrieval performance*)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)₃₋₈₅

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - –Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

$$\operatorname{sim}_{\operatorname{true}}(d,q) < \cos(\angle(\vec{d},\vec{q}))$$
³⁻⁸⁶

Problems with Lexical Semantics

- Synonymy: Different terms may have an dentical or a similar meaning (weaker: words indicating the same topic).
- -No associations between words are made in the vector space representation.

$$sim_{true}(d,q) > cos(\angle(\vec{d},\vec{q}))$$

Latent Semantic Indexing (LSI) Model

- representation of documents and queries by index terms
 - problem 1: many unrelated documents might be included in the answer set
 - problem 2: relevant documents which are not indexed by any of the query keywords are not retrieved
- possible solution: concept matching instead of index term matching
 - application in cross-language information retrieval (CLIR)

basic idea

- Map each document and query vector into a lower dimensional space which is associated with concepts
- Retrieval in the reduced space may be superior to retrieval in the space of index terms

Definition

- t: the number of index terms in the collection
- N: the total number of documents
- M=(M_{ij}): a term-document association matrix with t rows (i.e., term) and N columns (i.e., document)
- M_{ij}: a weight w_{i,j} associated with the termdocument pair [k_i, d_j] (e.g., using tf-idf)

 $A \in \mathbb{R}^{n \times n}$

(1) $A = A^{t}$

- $\exists Q \in R^{n \times n}$ st $QQ^t = I \{Q^tQ = I\}$ orthogonal singular value decomposition :
- $A = QDQ^{t} \quad \{A^{t} = (QDQ^{t})^{t} = (Q^{t})^{t} D^{t}Q^{t} = QDQ^{t} = A\}$

$$A \in \mathbb{R}^{n \times n}$$

$$(2) A \neq A^{t}$$

$$\exists U, V \in \mathbb{R}^{n \times n} \quad st \ U^{t}U = I, V^{t}V = I \quad \text{orthogonal}$$

$$\sin gular \ value \ decomposition: \quad (AB)^{T} = B^{T} A^{T}$$

$$A = UDV^{t}$$

$$AA^{t} = (UDV^{t})(UDV^{t})^{t} = (UDV^{t})(VDU^{t}) = UD^{2}U^{t}$$

$$AA^{t} = (UDV^{t})(UDV^{t})^{t} = (UDV^{t})(VDU^{t}) = UD^{2}U^{t}$$

$$0 \qquad \lambda_{n} \qquad \text{diagonal matrix}$$

$$\lambda_{1} \ge \lambda_{2} \ge \ldots \ge \lambda_{n} \ge 0$$

$$3-92$$

For an $m \times n$ matrix **A** of rank *r* there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

$$A = U\Sigma V^{T}$$

$$m \times m \quad m \times n \quad V \text{ is } n \times n$$

The columns of U are orthogonal eigenvectors of AA^{T} .

The columns of V are orthogonal eigenvectors of $A^{T}A$.

Eigenvalues $\lambda_1 \dots \lambda_r$ of **AA**^T are the eigenvalues of **A**^T**A**.

$$\sigma_{i} = \sqrt{\lambda_{i}}$$

$$\Sigma = diag(\sigma_{1}...\sigma_{r}) - Singular values.$$
3-94

• Illustration of SVD dimensions and

SVD example
Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus $m=3, n=2$. Its SVD is
 $\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$

1

MUTU

Typically, the singular values arranged in decreasing order. $\frac{3-96}{3-96}$

 \overline{M} : a term – document matrix with t rows and N columns $\overline{M} = \overline{K}\overline{S}\overline{D}^{t}$ $\overline{M}^{t}\overline{M}$: a N×N document – to – document matrix

 $\overrightarrow{M}\overrightarrow{M}^{t}$: a t×t term – to – term matrix

According to

 $\overline{M} \in R^{t \times N}$

 $\exists \overline{K} : the matrix of eigenvectors derived from \ \overline{M} \ \overline{M}^t \quad \overline{K}^t \ \overline{K} = I$ $\overline{D} : the matrix of eigenvectors derived from \ \overline{M}^t \ \overline{M} \quad \overline{D}^t \ \overline{D} = I$ $\overline{M} = \overline{K} \ \overline{S} \ \overline{D}^t$

 $\overline{M}^{t}\overline{M}$: document – to – document matrix

 $= (\overline{K}\overline{S}\overline{D}^{t})^{t}(\overline{K}\overline{S}\overline{D}^{t})$ $= (\overrightarrow{D}\overrightarrow{S}^{t}\overrightarrow{K}^{t})(\overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^{t})$ $=\overline{D}\overline{S}^{2}\overline{D}^{t}$ $\overrightarrow{M} \overrightarrow{M}^{t}$: term – to – term matrix $=(\overline{K}\overline{S}\overline{D}^{t})(\overline{K}\overline{S}\overline{D}^{t})^{t}$ $=(\overrightarrow{K}\overrightarrow{S}\overrightarrow{D}^{t})(\overrightarrow{D}\overrightarrow{S}^{t}\overrightarrow{K}^{t})$ $= \overline{K}\overline{S}^{2}\overline{K}^{t}$

對照A=QDQ^t Q is matrix of eigenvectors of A D is diagonal matrix of singular values 得到 D: the matrix of eigenvectors derived from $\overline{M}^{T}\overline{M}$ \overline{K} : the matrix of eigenvectors derived from $\overline{M}\overline{M}^t$ \overline{S} : $r \times r$ diagonal matrix of sin gular *values, where* $r = \min(t, N)$

Consider only the s largest singular values of \hat{S}

The resultant M_s matrix is the matrix of rank s which is closest to the original matrix M in the least square sense.

$\overrightarrow{M}_{s} = \overrightarrow{K}_{s} \overrightarrow{S}_{s} \overrightarrow{D}_{s}^{t}$	由概念分群來說明:
	太細-各個index term代表不同的概念
(s< <t, s<<n)<="" th=""><th>太粗-所有index term成為一概念</th></t,>	太粗-所有index term成為一概念

s必須足夠大到涵蓋所有相關文件, 也不能太粗,把不相關的納進來。

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
 - Map documents (*and* terms) to a lowdimensional representation.
 - Design a mapping such that the lowdimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space 3-100

Goals of LSI

- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

What it is

- From term-doc matrix A, we compute the approximation A_{k} .
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of *k*<<*r* dimensions

-These dimensions are not the original axes

Ranking in LSI

- query: a pseudo-document in the original M term-document
 - query is modeled as the document with number 0 - $\vec{M}_s^t \vec{M}_s$: the ranks of all documents w.r.t this query

$$\overrightarrow{M}_{s}^{t} \overrightarrow{M}_{s} = (\overrightarrow{K}_{s} \overrightarrow{S}_{s} \overrightarrow{D}_{s}^{t})^{t} \overrightarrow{K}_{s} \overrightarrow{S}_{s} \overrightarrow{D}_{s}^{t}$$

$$= \overrightarrow{D}_{s} \overrightarrow{S}_{s} \overrightarrow{K}_{s}^{t} \overrightarrow{K}_{s} \overrightarrow{S}_{s} \overrightarrow{D}_{s}^{t} = \overrightarrow{D}_{s} \overrightarrow{S}_{s} \overrightarrow{S}_{s} \overrightarrow{D}_{s}^{t}$$

$$= (\overrightarrow{D}_{s} \overrightarrow{S}_{s})(\overrightarrow{D}_{s} \overrightarrow{S}_{s})^{t}$$
(i,j) qualifies the relationship between
documents d_i and d_j When i = 0,
it denotes similarity between q and documents

Structured Text Retrieval Models

- Definition
 - Combine information on text content with information on the document structure
 - e.g., same-page(near('atomic holocaust', Figure(label('earth'))))
- Expressive power vs. evaluation efficiency
 - a model based on *non-overlapping lists*
 - a model based on *proximal nodes*
- Terminology
 - match point: position in the text of a sequence of words that matches the user query
 - region: a contiguous portion of the text
 - node: a structural component of the document (chap, sec, ...)

Non-Overlapping Lists

• divide the whole text of each document in nonoverlapping text regions (*lists*)

Non-Overlapping Lists

• Data structure

– a single inverted file

Recall that there is another inverted file for the words in the text

- each structural component (e.g., chap, sec, ...) stands as an entry
- for each entry, there is a list of text regions as a list occurrences
- Operations
 - Select a region which contains a given word
 - Select a region A which does not contain any other region B (where B belongs to a list distinct from the list for A)
 - Select a region not contained within any other region

3-106

Inverted Files

• File is represented as an array of indexed records.

	Term 1	Term 2	Term 3	Term 4
Record 1	1	1	0	1
Record 2	0	1	1	1
Record 3	1	0	1	1
Record 4	0	0	1	1

Inverted-file process

• The record-term array is inverted (transposed).

	Record 1	Record 2	Record 3	Record 4
Term 1	1	0	1	0
Term 2	1	1	0	0
Term 3	0	1	1	1
Term 4	1	1	1	1
Inverted-file process (Continued)

• Take two or more rows of an inverted term-record array, and produce a single combined list of record identifiers.

Query (term2 and term3) 1 1 0 0 0 1 1 1 1 < -- R2 Extensions of Inverted Index Operations (Distance Constraints)

- Distance Constraints
 - (A within sentence B) terms A and B must co-occur in a common sentence
 - (A adjacent B)

terms A and B must occur adjacently in the text

Extensions of Inverted Index Operations (Distance Constraints)

- Implementation
 - include term-location in the inverted indexes
 information: {R345, R348, R350, ...}
 retrieval: {R123, R128, R345, ...}
 - include sentence-location in the indexes information:

{R345, **25**; R345, **37**; R348, **10**; R350, **8**; ... } retrieval:

{R123, **5**; R128, **25**; R345, **37**; R345, **40**; ...}

Extensions of Inverted Index Operations (Distance Constraints)

- include paragraph numbers in the indexes sentence numbers within paragraphs word numbers within sentences information: {R345, 2, 3, 5; ...} retrieval: {R345, 2, 3, 6; ...}
- query examples

 (information adjacent retrieval)
 (information within five words retrieval)
- cost: the size of indexes

Model Based on Proximal Nodes

• hierarchical vs. flat indexing structures

. . .

entries: positions in the text

Model Based on Proximal Nodes

(*Continued*)

- query language
 - Specification of regular expressions
 - Reference to structural components by name
 - Combination
 - Example
 - Search for sections, subsections, or subsubsections which contain the word 'holocaust'
 - [(*section) with ('holocaust')]

Model Based on Proximal Nodes

(*Continued*)

- Basic algorithm
 - Traverse the inverted list for the term 'holocaust'
 - For each entry in the list (i.e., an occurrence), search the hierarchical index looking for sections, subsections, and sub-subsections
- Revised algorithm
 - For the first entry, search as before
 - Let the last matching structural component be the innermost matching component

nearby nodes

- Verify the innermost matching component also matches the second entry.
 - If it does, the larger structural components above it also do.

Models for Browsing

- Browsing vs. searching
 - The goal of a searching task is clearer in the mind of the user than the goal of a browsing task
- Models
 - Flat browsing
 - Structure guided browsing
 - The hypertext model

Models for Browsing

- Flat organization
 - Documents are represented as dots in a 2-D plan
 - Documents are represented as elements in a 1-D list, e.g., the results of search engine
- Structure guided browsing
 - Documents are organized in a directory, which group documents covering related topics
- Hypertext model
 - Navigating the hypertext: a traversal of a directed graph

Trends and Research Issues

- Library systems
 - Cognitive and behavioral issues oriented particularly at a better understanding of which criteria the users adopt to judge relevance
- Specialized retrieval systems
 - e.g., legal and business documents
 - how to retrieve all relevant documents without retrieving a large number of unrelated documents
- The Web
 - User does not know what he wants or has great difficulty in formulating his request
 - How the paradigm adopted for the user interface affects the ranking
 - The indexes maintained by various Web search engine are almost disjoint