

Lecture 13 Topic Tracking, Detection, and Summarization: Some IE Applications

Hsin-Hsi Chen

Department of Computer Science and Information Engineering National Taiwan University

Taipei, Taiwan

E-mail: hhchen@csie.ntu.edu.tw

Outline

- Topic Detection and Tracking
 - Topic Detection
 - Link Detection
- Summarization
 - Single Document
 - Multiple Document
 - Multilingual Document
- Summary

New Information Era

- How to extract the interesting information from large scale heterogeneous collection
- main technologies
 - natural language processing
 - information retrieval
 - information extraction

Topic Detection and Tracking (TDT)

Book:

Topic Detection and Tracking: Event-Based Information Organization, James Allan, Jaime Carbonnell, Jonathan Yamron (Editors), Kluwer, 2002

The TDT Project

History of the TDT Project

TDT Tasks

- Sponsor: DARPA
- Corpus: LDC
- Evaluation: NIST
- TDT Pilot Study -- 1997
- TDT phase 2 (TDT2) -- 1998
- TDT phase 3 (TDT3) 1999
- •

- The Story Segmentation Task
- The First-Story Detection Task
- The Topic Detection Task
- The Topic Tracking Task
- The Link Detection Task

Topic

A Topic:

A topic is defined to be a seminal event or activity, along with all directly related events and activities.

TDT3 topic detection task is defined as:

The task of detecting and tracking topics not previously known to the system

Topic Detection and Tracking (TDT)

• Story Segmentation

- dividing the transcript of a news show into individual stories

• First Story Detection

 recognizing the onset of a new topic in the stream of news stories

• Cluster Detection

grouping all stories as they arrive, based on the topics they discuss

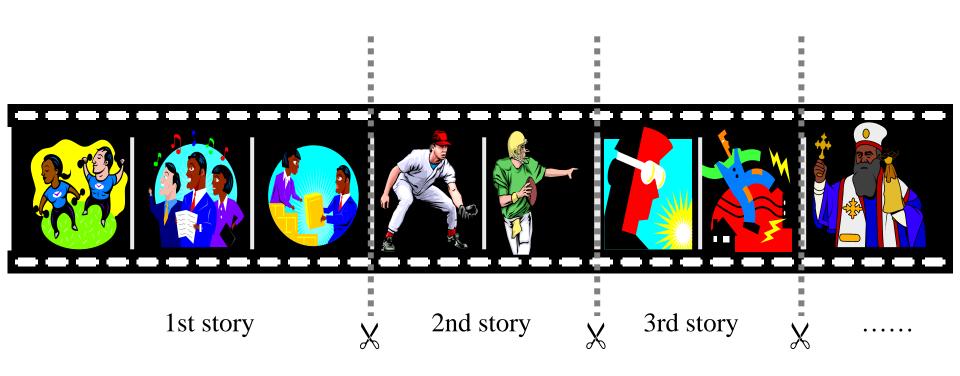
Tracking

 monitoring the stream of news stories to find additional stories on a topic that was identified using several sample stories

• Story Link Detection

 deciding whether two randomly selected stories discuss the same news topic

Story Segmentation



Hsin-Hsi Chen (NTU)

Story Segmentation

goal

 take a show of news and to detect the boundaries between stories automatically

types

- done on the audio source directly
- using a text transcript of the show—either closed captions or speech recognizer output

approaches

- look for changes in the vocabulary that is used
- look for words, phrases, pauses, or other features that occur near story boundaries, to see if they can find sets of features that reliably distinguish the middle of a story from its beginning or end, and clustering those segments to find larger story-like units

First Story Detection

goal

- recognize when a news topic appears that had not been discussed earlier
- Detect that first news story that reports a bomb's explosion,
 a volcano's eruption, or a brewing political scandal

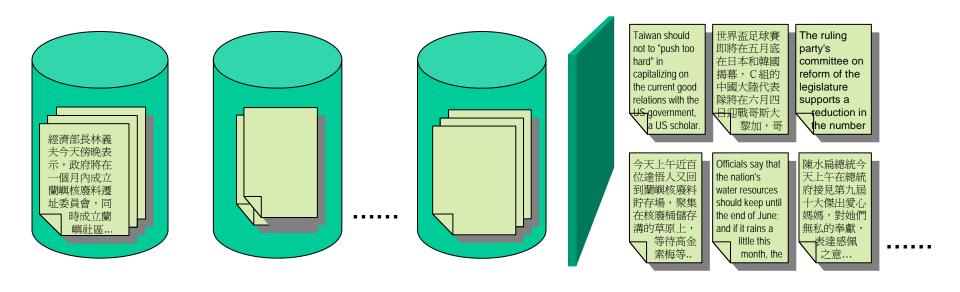
approach

- (1) Reduce stories to a set of features, either as a vector or a probability distribution.
- (2) When a new story arrives, its feature set is compared to those of *all* past stories.
- (3) If there is sufficient difference the story is marked as a first story; otherwise, not.

applications

 interest to information, security, or stock analysts whose job is look for new events that are of significance in their area

Cluster Detection



Hsin-Hsi Chen (NTU)

Cluster Detection

goal

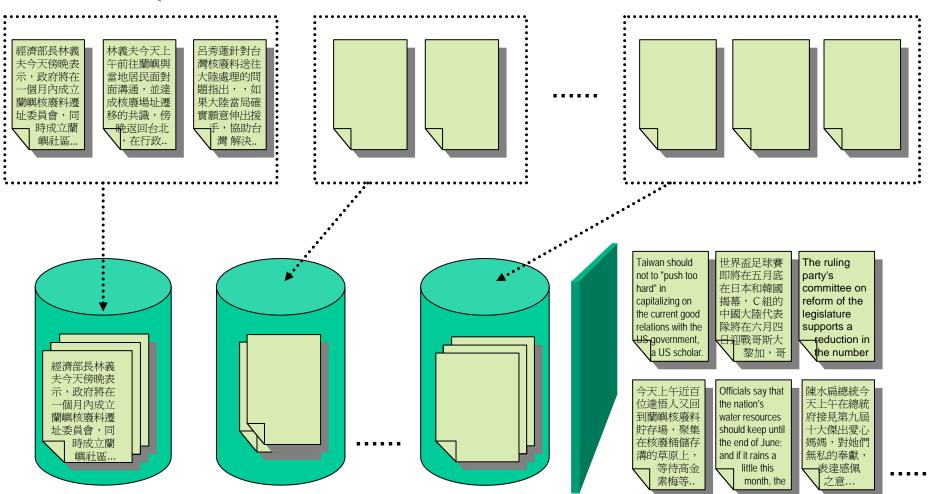
- to cluster stories on the same topic into bins
- the creation of bins is an unsupervised task

approach

- (1) Stories are represented by a set of features.
- (2) When a new story arrives it is compared to all past stories and assigned to the cluster of the most similar story from the past (i.e., one nearest neighbor).

Topic Tracking

Hsin-Hsi Chen (NTU)



13

Tracking

goal

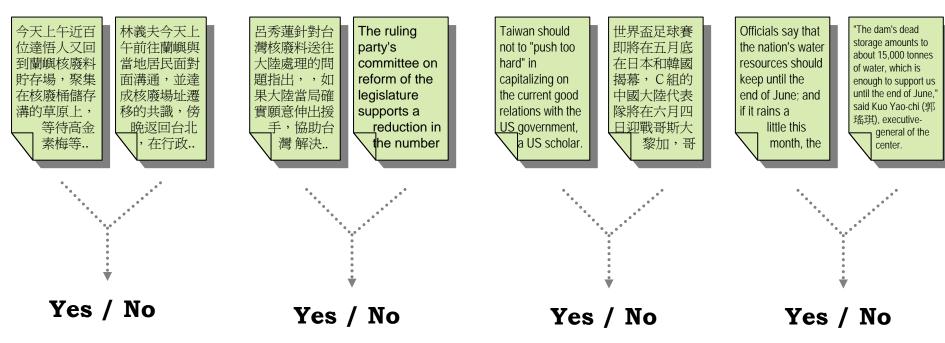
- similar information retrieval's filtering task
- provided with a small number of stories that are known to be on the same topic, find all other stories on that topic in the stream of arriving news

approach

- extract a set of features from the training stories that differentiate it from the much larger set of stories in the past
- When a new story arrives, it is compared to the topic features and if it matches sufficiently, declared to be on topic.

Story Link Detection

- goal
 - handed two news stories, determine whether or not they discuss the same topic



Hsin-Hsi Chen (NTU)

The TDT3 Corpus

- Source: Same as in TDT2 in English, VOA, Xinhua and Xaobao in Chinese.
- Total number of Stories: 34,600 (E), 30,000 (M)
- Total number of topics: 60 topics
- Time period: October December, 1998
- Language type: English and Mandarin

Evaluation Criteria

- Use penalties
- Miss-False Alarm vs. Precision-Recall
- Cost Functions
- Story-weighted and Topic-weighted

Miss-False Alarm vs. Precision-Recall

	In topic	Not in topic
In topic (system)	(1)	(2)
Not in topic (system)	(3)	(4)

- Miss = (3) / [(1) + (3)]
- False alarm = (2) / [(2) + (4)]
- Recall = (1) / [(1) + (3)]
- Precision = (1) / [(1) + (2)]

Cost Functions

$$C_{Det} = C_{Miss} \cdot P_{Miss} \cdot P_{t \operatorname{arg}et} + C_{FA} \cdot P_{FA} \cdot P_{non-t \operatorname{arg}et}$$

$$(C_{Det})_{norm} = C_{Det} / MIN(C_{Miss} \cdot P_{target}, C_{FA} \cdot P_{non-target})$$

 C_{Miss} (e.g., 10) and C_{FA} (e.g., 1) are the costs of a missed detection and a false alarm respectively, and are pre-specified for the application.

 P_{Miss} and P_{FA} are the probabilities of a missed detection and a false alarm respectively and are determined by the evaluation results.

 P_{Target} is the *a priori* probability of finding a target as specified by the application.

Cluster Detection

Hsin-Hsi Chen and Lun-Wei Ku (2002). "An NLP & IR Approach to Topic Detection." *Topic Detection and Tracking: Event-Based Information Organization*, James Allan, Jaime Carbonnell, Jonathan Yamron (Editors), Kluwer, 243-264.

Hsin-Hsi Chen (NTU)

General System Framework

• Given a sequence of news stories, the topic detection task involves detecting and tracking topics not previously known to the system

Algorithm

- the first news story d_1 is assigned to topic t_1
- assume there already are k topics when a new article d_i is considered
- news story d_i may belong to one of k topics, or it may form a new topic t_{k+1}

How to make decisions

The first decision phase:

- Define similarity score S_{td}
- Relevant if $S_{td} > TH_{high}$
- Irrelevant if $S_{td} < TH_{low}$
- Undecided if $TH_{low} < S_{td} < TH_{high}$

The second decision phase:

- Define Medium threshold: $TH_{medium} = \frac{(TH_{high} + TH_{low})}{2}$ Relevant if $S_{td} > TH_{medium}$
- Irrelevant if $S_{td} < TH_{medium}$

Deferral Period

- How long the system can delay when making a decision
- How many news articles the system can look ahead
- The "burst" nature of news articles
- The deferral period is defined in DEF
- DEF = 10

Issues

- (1) How can a news story and a topic be represented?
- (2) How can the similarity between a news story and a topic be calculated?
- (3) How can the two thresholds, i.e., TH_l and TH_h , be interpreted?
- (4) How can the system framework be extended to multilingual case?

Hsin-Hsi Chen (NTU)

Representation of News Stories

- Term Vectors for News Stories
 - the weight w_{ii} of a candidate term f_i in d_i

$$w_{ij} = \ln(tf_{ij}) \times idf_{j}$$

$$idf_{j} = \ln(\frac{n}{n_{j}})$$

- $idf_{j} = \ln(\frac{n}{n_{j}})$ tf_{ij} is the number of occurrences of f_j in d_i
- n is the total number of topics that the system has detected
- $-n_i$ is the number of topics in which f_i occurs
- The first N (e.g., 50) terms are selected and form a vector for a news story

Representation of Topics

- Term Vectors for Topics
 - the time-variance issue: the event changes with time
 - d_i (an incoming news story) is about to be inserted into the cluster for t_k (the highest similarity with d_i)
 - Top-N-Weighted strategy
 - Select N terms with larger weights from the current V_{tk} and V_{di}
 - LRU+Weighting strategy
 - both recency and weight are incorporated
 - keep M candidate terms for each topic
 - N older candidate terms with lower weights are deleted
 - keep the more important terms and the latest terms in each topic cluster

Two Thresholds and the Topic Centroid

- The behavior of the centroid of a topic
- Define distance:

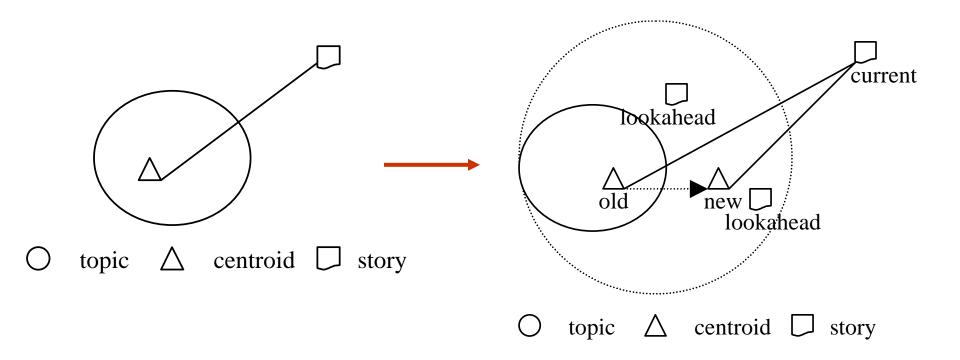
$$1-S_{td}$$

$$S_{td} = \frac{\langle F_t \rangle \cdot \langle F_d \rangle}{|\langle F_t \rangle| \langle F_d \rangle|}$$

- The more similar they are, the less the distance is.
- The contribution of relevant documents when lookahead.

Two-Threshold Method

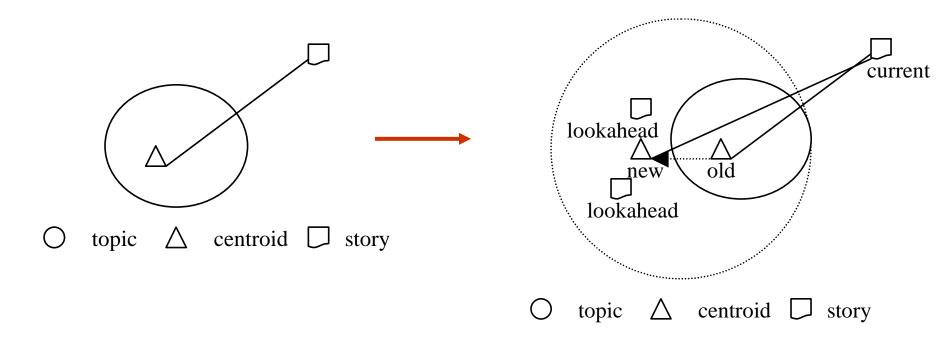
relationship from undecidable to relevant



Hsin-Hsi Chen (NTU)

Two-Threshold Method

• Relationship from undecidable to irrelevant



Hsin-Hsi Chen (NTU)

Multilingual Topic Detection

- Lexical Translation
- Name Transliteration
- Representation of Multilingual News
 - For Mandarin news stories, a vector is composed of term pairs (Chinese-term, English-term)
 - For English news stories, a vector is composed of term pairs (nil, English-term)
- Representation of Topics
 - there is an English version (either translated or native) for each candidate term

Multilingual Topic Detection

- Similarity Measure
 - The incoming is a Mandarin news story
 - d_i is a represented as $<(c_{i1},e_{i1}), (c_{i2},e_{i2}), ..., (c_{iN},e_{iN})>.$
 - Use c_{ij} ($1 \le j \le N$) to match the Chinese terms in V_{tk} , and e_{ij} ($1 \le j \le N$) to match the English terms.
 - The incoming is an English news story
 - d_i is represented as $\langle (nil, e_{i1}), (nil, e_{i2}), ..., (nil, e_{iN}) \rangle$
 - Use e_{ij} ($1 \le j \le N$) to match the English terms in V_{tk} , and English translation of the Chinese terms.

Machine Transliteration

Classification

- Direction of Transliteration
 - Forward (Firenze→ 翡冷翠)
 - Backward (阿諾史瓦辛格→Arnold Schwarzenegger)
- Character Sets b/w Source and Target Languages
 - Same
 - Different

Forward Transliteration b/w Same Character Sets

- Especially b/w Roman Characters
- Usually no transliteration is performed.
- Example
 - Beethoven (貝多芬)
 - Firenze→Florence, Muenchen→Munich,
 Praha→Prague, Moskva→Moscow,
 Roma→Rome
 - 小淵惠三

Forward Transliteration b/w Different Character Sets

Procedure

Sounds in Source language → Sounds in Target language → Characters in Target language

• Example

- 吳宗憲→Wu×{Tsung, Dzung, Zong, Tzung}×{Hsien, Syan, Xian, Shian}
- Lewinsky→露文斯基,柳思基,陸雯絲姬,陸 文斯基,吕茵斯基,李文斯基,露溫斯基,蘿恩 斯基,李雯斯基,李文絲基,etc.

Backward Transliteration b/w Same Character Sets

• Few or nothing to do because original transliteration is simple or straightforward

Backward Transliteration b/w Different Character Sets

- The Most Difficult and Critical
- Two Approaches
 - Reverse Engineering
 - Mate Matching

Similarity Measure

- In our study, transliteration is treated as similarity measure.
 - Forward: Maintain similarity in transliterating
 - Backward: Conduct similarity measurement with words in the candidate list

Three Levels of Similarity Measure

- Physical Sound
 - The most direct
- Phoneme
 - A finite set
- Grapheme

Grapheme-Based Approach

- Backward Transliteration from Chinese to English, a module in a CLIR system
- Procedure
 - Transliterated Word Sequence Recognition (i.e., named entity extraction)
 - Romanization
 - Compare romanized characters with a list of English candidates

Strategy 1: common characters

- How many common characters there are in a romanized Chinese proper name and an English proper name candidate.
- 埃斯其勒斯
- Wade-Giles romanization: ai.ssu.chi.le.ssu
- aeschylus
 ais suchilessu --> 3/9=0.33
- average ranks for a mate matching WG (40.06), Pinyin (31.05)

Strategy 2: syllables

- The matching is done in the syllables instead of the whole word.
- aes chy lus \underline{aissu} \underline{chi} $\underline{lessu} \longrightarrow 6/9$
- average ranks of the mate matching WG (35.65), Pinyin (27.32)

Strategy 3: integrate romanization systems

- different phones to denote the same sounds
 - consonants
 p vs. b, t vs. d, k vs. g, ch vs. j, ch vs. q,
 hs vs. x, ch vs. zh, j vs. r, ts vs. z, ts vs. c
 - vowels
 ien vs. -ian, -ieh vs. -ie, -ou vs. -o,
 o vs. -uo, -ung vs. -ong, -ueh vs. -ue,
 -uei vs. -ui, -iung vs. -iong, -i vs. -yi
- average ranks of mate matching: 25.39

Strategy 4: weights of match characters (1)

- Postulation: the first letter of each Romanized Chinese character is more important than others
- score= $\sum_i (f_i^*(el_i/(2*cl_i)+0.5)+o_i^*0.5)/el$ el: length of English proper name, el_i: length of syllable *i* in English name, cl_i: number of Chinese characters corresponding to syllable *i*, f: number of matched first-letters in syllable *i*

 f_i : number of matched first-letters in syllable i, o_i : number of matched other letters in syllable i

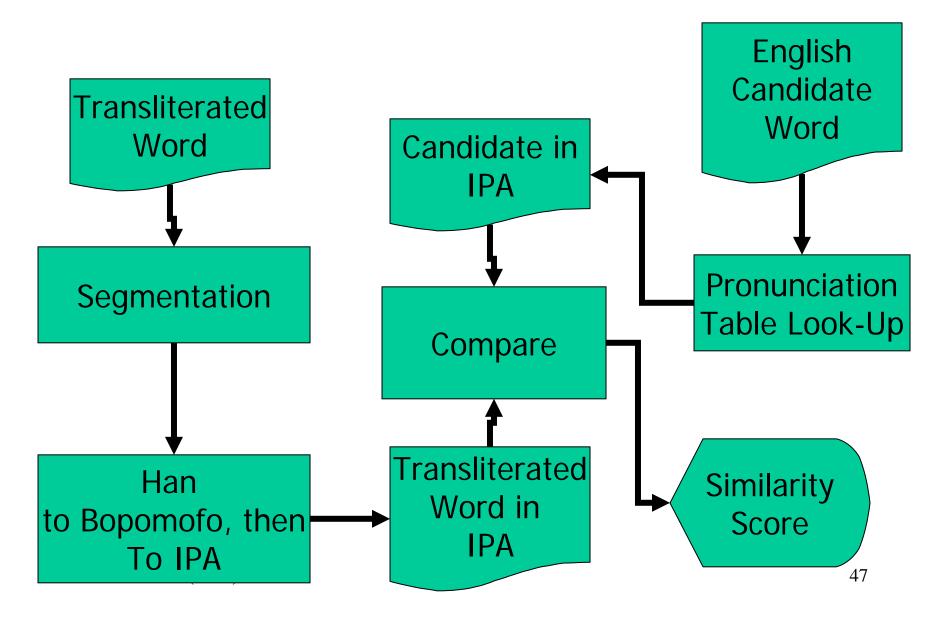
Strategy 4: weights of match characters (2)

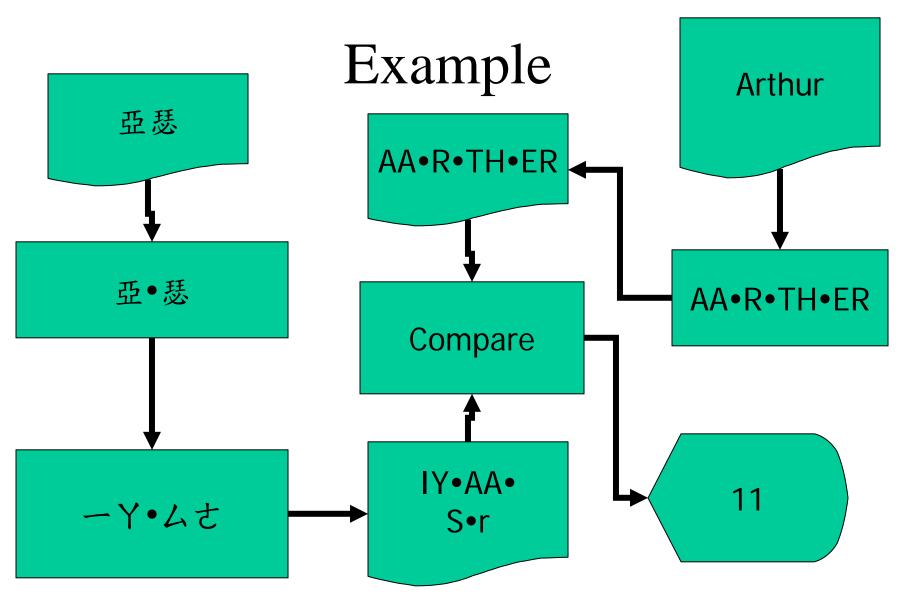
- average ranks of mate matching: 20.64
- penalty when the first letter of a Romanized Chinese character is not matched
 - average ranks: 16.78

Strategy 5: pronunciation rules

- *ph* usually has *f* sound.
- average ranks of mate matching: 12.11
- performance of person name translation
 1 2-5 6-10 11-15 16-20 21-25 25+
 524 497 107 143 44 22 197
- One-third have rank 1.

Phoneme-based Approach





Similarity

- s(x, y): similarity score between characters
- $\sum_{i=1}^{l} s(S_1^{'}(i), S_2^{'}(i))$: similarity score of an alignment of two strings
- Similarity score of two strings is defined as the score of the optimal alignment in given scoring matrix.

Compute Similarity

- Similarity can be calculated by dynamic programming in O(nm)
- Recurrence equation

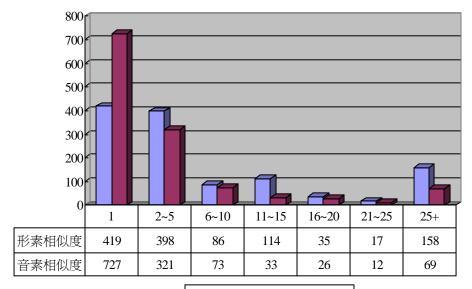
$$V(i, j) = \max[V(i-1, j-1) + s(S_1(i), S_2(j)),$$

$$V(i-1, j) + s(S_1(i), _),$$

$$V(i, j-1) + s(_, S_2(j))]$$

Experiment Result

- Average Rank
 - 7.80 (Phoneme level) better than 9.69 (Grapheme level)
 - 57.65% is rank 1 (Phoneme level) > 33.28%(Grapheme level)



■形素相似度 ■音素相似度

Experiments

Named Entities Only & the Top-N-Weighted Strategy (Chinese Topic Detection)

TH low	TH high	Topic-Weighted	Topic-Weighted	Cdet (norm)
		P(miss)	P(F/A)	
0	0.20	0.6809	0.0075	0.7178
0.05	0.25	0.6884	0.0102	0.7385
0.10	0.30	0.6542	0.0068	0.6877
0.15	0.35	0.6717	0.0045	0.6938
0.20	0.40	0.6716	0.0037	0.6899

Named Entities Only & the LRU+Weighting Strategy (Chinese Topic Detection)

TH low	TH high	P(miss)	P(F/A)	Cdet	Change (vs.
				(norm)	Table 3)
0.	0.20	0.6546	0.0014	0.6613	7.87%↑
0.05	0.25	0.6569	0.0008	0.6607	10.53%↑
0.10	0.30	0.6732	0.0003	0.6749	1.86%↑
0.15	0.35	0.6949	0.0002	0.6957	0.27%↓
0.20	0.40	0.7591	0.0001	0.7595	10.09%↓

The up arrow \uparrow and the down arrow \downarrow denote that the performance improved or worsened, respectively

Nouns-Verbs & the Top-N-Weighted Strategy (Chinese Topic Detection)

TH low	TH high	P(miss)	P(F/A)	Cdet	Change (vs.
				(norm)	Table 3)
0	0.20	0.9739	0.0052	0.9993	39.21%↓
0.05	0.25	0.9946	0.0004	0.9965	34.94%↓
0.10	0.30	0.8745	0.0060	0.9039	31.44%↓
0.15	0.35	0.7943	0.0015	0.8015	15.52%↓
0.20	0.40	0.8119	0.0003	0.8134	17.90%↓

The performance was worse than that in the earlier experiments.

Nouns-Verbs & the LRU+Weighting Strategy (Chinese Topic Detection)

TH low	TH high	P(miss)	P(F/A)	Cdet	Change (vs.
				(norm)	Table 3)
0	0.20	0.5004	0.0025	0.5128	28.56%↑
0.05	0.25	0.5292	0.0015	0.5365	27.35%↑
0.10	0.30	0.6128	0.0008	0.6169	10.30%↑
0.15	0.35	0.6952	0.0003	0.6968	0.43%↓
0.20	0.40	0.7126	0.0002	0.7133	3.39%↓

The LRU+Weighting strategy was better than the top-N-weighted strategy when nouns and verbs were incorporated

Comparisons of Term and Strategies

	Named Entities Only	Nouns and Verbs
The top-N-weighted	2	3
strategy		
The	2	1
LRU+Weighting		
strategy		

Results with TDT-3 Corpus

TH low	TH high	Named Entities	Nouns-Verbs &
		& LRU+W	LRU+W
		Cdet (norm)	Cdet (norm)
0	0.20	0.5716	0.4327
			(24.30% ↑)
0.10	0.30	0.6166	0.4727
			(23.34% ↑)
0.15	0.35	0.6271	0.5610
			(10.54%↑)
0.20	0.40	0.6812	0.4775
			(29.90%↑)

English-Chinese Topic Detection

- A dictionary was used for lexical translation.
- For name transliteration, we measured the pronunciation similarity among English and Chinese proper names
 - A Chinese named entity extraction algorithm was applied to extract Chinese proper names
 - heuristic rules such as continuous capitalized words were used to select English proper names

Performance of English-Chinese Topic Detection

type	TH low	TH high	P(miss)	P(F/A)	Cdet
					(norm)
English-Chinese	0.1	0.2	0.5115	0.0034	0.5280
Chinese	0.1	0.3	0.4673	0.0011	0.4727

Named Entities

• Named entities, which denote people, places, time, events, and things, play an important role in a news story

Solutions

- Named Entities with Amplifying Weights before Selecting
- Named Entities with Amplifying Weights after Selecting

Named Entities with Amplifying Weights before Selecting

amplification	TH low	TH high	P(miss)	P(F/A)	Cdet
					(norm)
weight × 1	0	0.15	0.4010	0.0060	0.4304
weight × 2	0	0.15	0.4335	0.0038	0.4519
weight \times 3	0	0.15	0.4559	0.0032	0.4714

Named Entities with Amplifying Weights after Selecting

amplification	TH low	TH high	P(miss)	P(F/A)	Cdet
					(norm)
weight × 1	0	0.15	0.4010	0.0060	0.4304
weight × 2	0	0.15	0.3630	0.0027	0.3763
weight × 3	0	0.15	0.3552	0.0037	0.3740

Summarization

Information Explosion Age

- Large scale information is generated quickly, and crosses the geographic barrier to disseminate to different users.
- Two important issues
 - how to filter useless information
 - how to absorb and employ information effectively
- Example: an on-line news service
 - it takes much time to read all the news
 - personal news secretary
 - eliminate the redundant information
 - reorganize the news

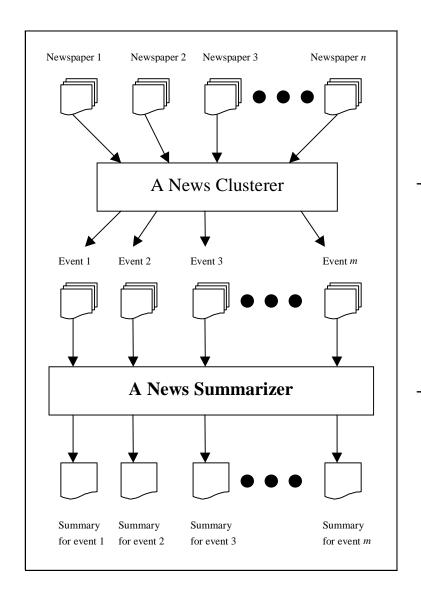
Summarization

- Create a shorter version for the original document
- applications
 - save users' reading time
 - eliminate the bottleneck on the Internet
 - **—** ...
- types
 - single document summarization
 - multiple document summarization
 - Multilingual multi-document summarization

Summac-1

- organized by DARPA Tipster Text Program in 1998
- evaluation of single document summarization
 - Categorization: Generic, indicative summary
 - Adhoc: Query-based, indicative summary
 - Q&A: Query-based, informative summary

Overview of our Summarization System



- Employing a segmentation system
- Extracting named entities
- Applying a tagger
- Clustering the news stream

- Partitioning a Chinese text
- Linking the meaningful units
- Displaying the summarization results

A News Clusterer (segmentation)

- identify the word boundary
- strategy
 - a dictionary
 - some morphological rules
 - numeral + classifier, e.g., 一個個,一條條
 - suffix, e.g., 學生們
 - special verbs, e.g., 吃吃看, 漂漂亮亮
 - an ambiguity resolution mechanism

A News Clusterer (named entity extraction)

- extract named organizations, people, and locations, along with date/time expressions and monetary and percentage expressions
- strategy
 - character conditions
 - statistic information
 - titles
 - punctuation marks
 - organization and location keywords
 - speech-act and locative verbs
 - cache and n-gram model

Negative effects on summarization systems

- Two sentences denoting the similar meaning may be segmented differently due to the segmentation strategies.
 - 但法務部長城仲模內定升任司法院副院長 ... ---> 但 法務部(Nc) 長城(Nc) 仲模(Nb) 內定(VC)升任(VG) 司法院 (Nc) 副院長(Na) ...
 - 而城仲模轉任司法院副院長之後的法務部長遺缺 ---> 而 城仲模(Nb) 轉任(VG) 司法院(Nc) 副院長(Na) 之後(Ng) 的 法務(Na) 部長(Na) 遺缺(Na)
 - major title and major person are segmented differently

Negative effects on summarization systems (Continued)

- Unknown words generate many singlecharacter words
 - "土(Na) 石(Na) 流(VC)", "園(Nc) 山(Na) 村 (Nc)", "芭(Nb) 比(VC) 絲(Na)", "老(VH) 丙 (Neu) 建(VC)", and so on
- These words tend to be nouns and verbs, which are used in computing the scores for similarity measure.

A News Clusterer

- two-level approach
 - news articles are classified on the basis of a predefined topic set
 - the news articles in the same topic set are partitioned into several clusters according to named entities
- advantage
 - reducing the ambiguity introduced by famous persons and/or common names

Similarity Analysis

- basic idea in summarizing multiple news stories
 - which parts of new stories denote the same event?
 - what is a basic unit for semantic checking?
 - paragraph
 - sentence
 - others
- specific features of Chinese sentences
 - writers often assign punctuation marks at random
 - sentence boundary is not clear

Matching Unit

example

- 西班牙裔 是 美國 少數 族裔 人口 成長 最快 的一支 ,這股 支持 力量 將 使 喬治 未來 在與 共和黨 內 的 提名 競爭者 相較 之下 ,別 具 優勢 。

matching unit

- segments separated by comma
 - three segments
 - the segment may contain too little information
- segments separated by period
 - one segment
 - the segment may contain too much information

Meaningful Units

- linguistic phenomena of Chinese sentences
 - about 75% of Chinese sentences are composed of more than two segments separated by commas
 - a segment may be an S, a NP, a VP, an AP, or a PP
- Meaningful unit is a basic matching unit
- previous example
 - 西班牙裔 是 美國 少數 族裔 人口 成長 最快 的 一 支
 - 這股支持力量將使喬治未來在與共和黨內的 提名競爭者相較之下,別具優勢

Meaningful Units (Continued)

- a MU that is composed of several sentence segments denotes a complete meaning
- three criteria
 - punctuation marks
 - sentence terminators: period, question mark, exclamation mark
 - segment separators: comma, semicolon and caesura mark

Meaningful Units (Continued)

- linking elements
 - forward-linking
 - a segment is linked with its next segment
 - 下課<u>之後</u>,我要去看電影。 (<u>After</u> I get out of class, I want to see a movie.)
 - backward-linking
 - a segment is linked with its previous segment
 - 我本來想去看電影,<u>可是</u>我沒有買到票。 (Originally, I had intended to see a movie, <u>but</u> I didn't buy a ticket.)
 - couple-linking
 - two segments are put together by a pair of words in these two segments
 - <u>因為</u>我沒有買到票,<u>所以</u>我沒有去看電影。
 (Because I didn't by a ticket, (so) I didn't see a movie.)

Meaningful Units (Continued)

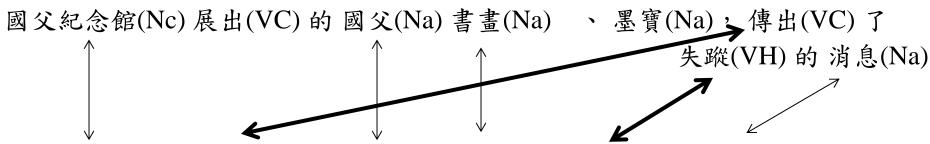
topic chain

- The topic of a clausal segment is deleted under the identity with a topic in its preceding segment
- 他駕駛這艘太空梭, e 在太空中繞著月球飛行, e 等待這兩個人完成工作。 (He drove the space shuttle and e flew around the moon, e waiting for these two men completing their jobs)
- given two VP segments, or one S and one VP segments, if their expected subjects are unifiable, then the two segments can be linked (Chen, 1994)
- We employ part of speech information only to predict if a subject of a verb is missing. If it does, it must appear in the previous segment and the two segments are connected to form a larger unit.

Similarity Models

• basic idea

- find the similarity among MUs in the news articles reporting the same event
- link the similar MUs together
- verbs and nouns are important clues for similarity measures
- example (nouns: 4/5, 4/4; verbs: 2/3, 2/2)



國父紀念館(Nc) 傳出(VC) 了 國父(Na) 書畫(Na) 失蹤(VH) 的 消息(Na)

Hsin-Hsi Chen (NTU)

Similarity Models (Continued)

strategies

- (S1) Nouns in one MU are matched to nouns in another MU, so are verbs.
- (S2) The operations in (S1) are exact matches.
- (S3) A Chinese thesaurus is employed during the matching.
- (S4) Each term specified in (S1) is matched only once.
- (S5) The order of nouns and verbs in MU is not considered.
- (S6) The order of nouns and verbs in MU is critical, but it is relaxed within a window.
- (S7) When continuous terms are matched, an extra score is added.
- (S8) When the object of transitive verbs are not matched, a score is subtracted.
- (S9) When date/time expressions and monetary and percentage expressions are matched, an extra score is added.

Testing Corpus

- Nine events selected from Central Daily News, China Daily Newspaper, China Times Interactive, and FTV News Online
 - 社會役的實施 (military service): 6 articles
 - 老丙建建築 (construction permit): 4 articles
 - 三芝鄉土石流 (landslide in Shan Jr): 6 articles
 - 總統布希之子 (Bush's sons): 4 articles
 - 芭比絲颱風侵台 (Typhoon Babis): 3 articles
 - 股市穩定基金 (stabilization fund): 5 articles
 - 國父墨寶失竊案 (theft of Dr Sun Yat-sen's calligraphy): 3 articles
 - 央行調降利率 (interest rate of the Central Bank): 3 articles
 - 內閣總辭問題 (the resignation issue of the Cabinet): 4 articles

 Hsin-Hsi Chen (NTU)

 81

Experiment Results

- Model 1 (baseline model)
 - (S1) Nouns in one MU are matched to nouns in another MU, so are verbs.
 - (S3) The operations in (S1) is relaxed to inexact matches.
 - (S4) Each term specified in (S1) is matched only once.
 - (S5) The order of nouns and verbs in MU is not considered.
- Precision: 0.5000, Recall: 0.5434
- Consider the subject-verb-object sequence
 - The matching order of nouns and verbs are kept conditionally

- Model 2 = Model 1 (S5) + (S6)
 - (S5) The order of nouns and verbs in MU is not considered.
 - (S6) The order of nouns and verbs in MU is critical, but it is relaxed within a window.
 - M1 precision: 0.5000 recall: 0.5434
 - M2 precision: 0.4871 ↓ recall: 0.3905 ↓
 - The syntax of Chinese sentences is not so restricted
- Give up the order criterion, but we add an extra score when continuous terms are matched, and subtract some score when the object of a transitive verb is not matched.

- Model 3 = Model 1 +
 - (S7) When continuous terms are matched, an extra score is added.
 - (S8) When the object of transitive verbs are not matched, a score is subtracted.

```
    M1 precision: 0.5000 recall: 0.5434
    M2 precision: 0.4871 ↓ recall: 0.3905
    M3 precision: 0.5080 ↑ recall: 0.5888
```

 Consider some special named entities such as date/time expressions and monetary and percentage expressions

- Model 4 = Model 3 +
 - (S9) When date/time expressions and monetary and percentage expressions are matched, an extra score is added.

```
    M1 precision: 0.5000 recall: 0.5434
    M2 precision: 0.4871 | recall: 0.3905 |
    M3 precision: 0.5080 recall: 0.5888
    M4 precision: 0.5164 recall: 0.6198
```

• Estimate the function of the Chinese thesaurus

- Model 5 = M4 (S3) + (S2)
 - (S3) The operations in (S1) is relaxed to inexact matches.
 - (S2) The operations in (S1) are exact matches.
 - M4 precision: 0.5164 recall: 0.6198
 - M5 precision: 0.5243 ↑ recall: 0.5579 ↓

Analysis

- The same meaning may not always be expressed in terms of the same words or synonymous words.
- We can use different format to express monetary and percentage expressions.
 - two hundreds and eighty-three billions
 二千八百三十億元,二八三○億元,2830億
 - seven point two five percent 百分之七點二五,七●二五%" or "7.25%
- segmentation errors
- incompleteness of thesaurus
 - Total 40% of nouns and 21% of verbs are not found in the thesaurus.

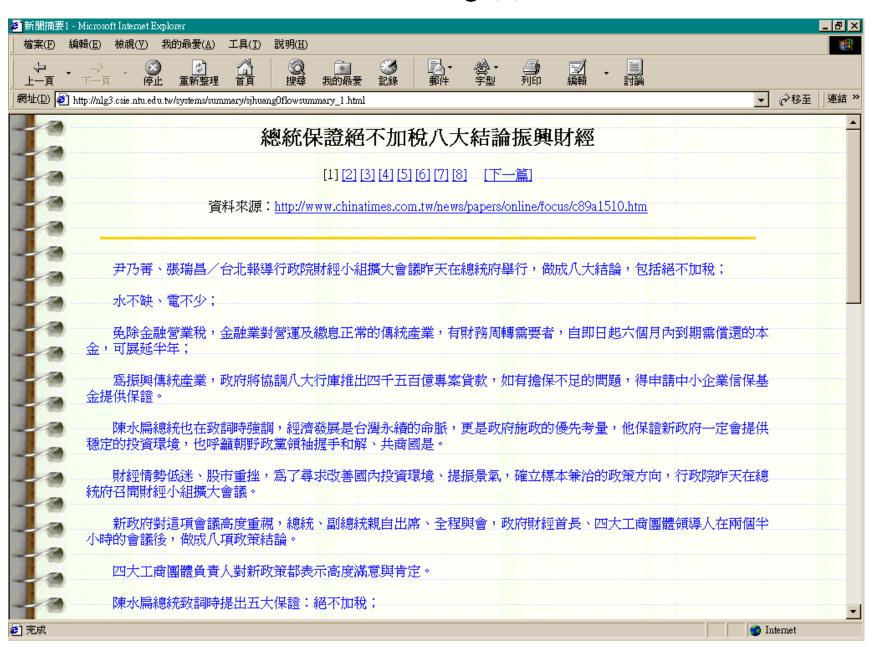
Presentation Models

- display the summarization results
 - browsing model
 - the news articles are listed by information decay
 - focusing model
 - a summarization is presented by voting from reporters

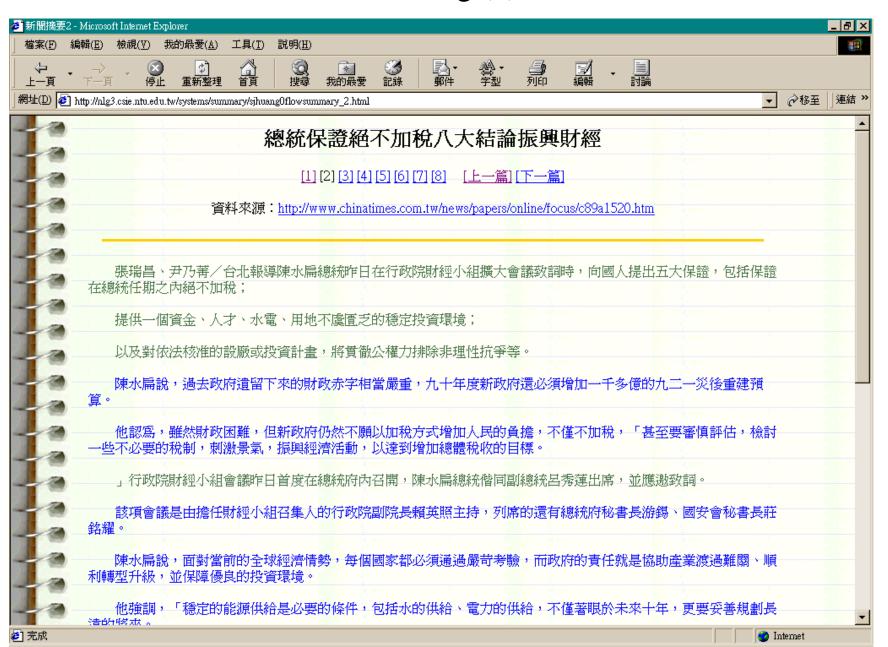
Browsing Model

- The first news article is shown to the user in its whole content.
- In the news articles shown latter, the MUs denoting the information mentioned before are shadowed.
- The amount of information in a news article is measured in terms of the number of MUs.
- For readability, a sentence is a display unit.

Browsing (1)



Browsing (2)

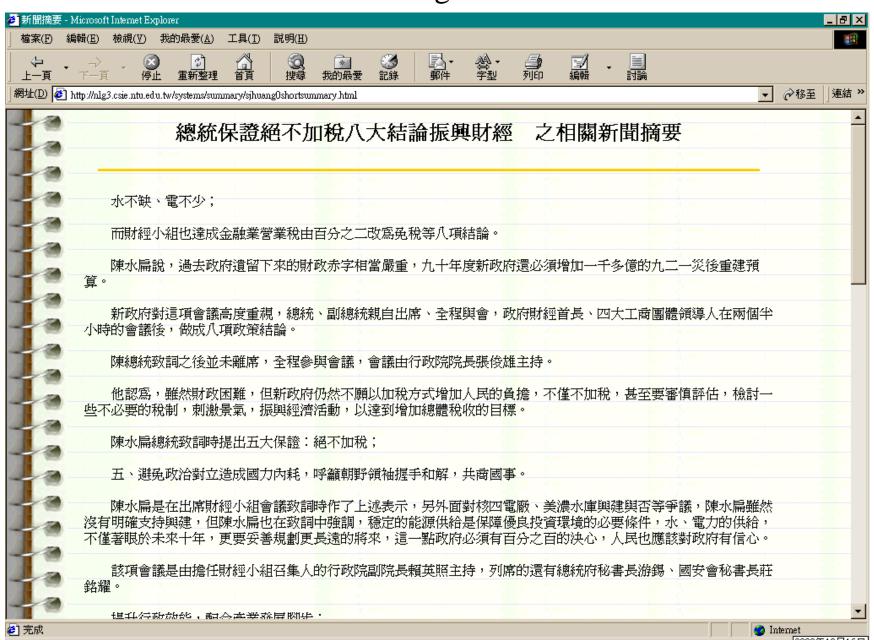


Browsing (3)

Focusing Model

- For each event, a reporter records a news story from his own viewpoint.
- Those MUs that are similar in a specific event are common focuses of different reporters.
- For readability, the original sentences that cover the MUs are selected.
- For each set of similar MUs, only the longest sentence is displayed.
- The display order of the selected sentences is determined by relative position in the original news articles.

Focusing Model



Experiments and Evaluation

- measurements
 - the document reduction rate
 - the reading-time reduction rate
 - the information carried
- The higher the document reduction rate is, the more time the reader may save, but the higher possibility the important information may be lost

Reduction Rates for Focusing Summarization

Event Name	Doc Len	Sum Len	Sum/Doc	Reduction%	
1. military service	7658	2402	0.3137	68.63%	
2. construction permit	4182	1226	0.2932	70.68%	
3. landslide in Shan Jr	5491	1823	0.3320	66.80%	
4. Bush's sons	6186	924	0.1494	85.06%	
5. Typhoon Babis	4068	1460	0.3589	64.11%	
6. stabilization fund	8434	2243	0.2659	73.41%	
7. theft of Dr Sun Yat-sen's calligraphy	4576	1524	0.3330	66.70%	
8. interest rate of the Central Bank	4578	1690	0.3692	63.08%	
9. the resignation issue of the Cabinet	4980	1368	0.2747	72.53%	
Average	50153	14660	0.2923	70.77%	

Reduction Rates for Browsing Summarization

Event Name	Doc Len	Sum Len	Sum/Doc	Reduction%
1. military service	7658	2716	0.3547	64.53%
2. construction permit	4182	2916	0.6973	30.27%
3. landslide in Shan Jr	5491	2946	0.5365	46.35%
4. Bush's sons	6186	5098	0.8241	17.59%
5. Typhoon Babis	4068	2270	0.5580	44.20%
6. stabilization fund	8434	4299	0.5097	49.03%
7. theft of Dr Sun Yat-sen's calligraphy	4576	2840	0.6206	37.94%
8. interest rate of the Central Bank	4578	2682	0.5858	41.42%
9. the resignation issue of the Cabinet	4980	3190	0.6406	35.94%
Average	50153	28957	0.5774	42.26%

Ratio of Summary to Full Article in Browsing Summarization

Article	1	2	3	4	5	6	7	8	9
Event									
1	100%	100%	100%	100%	100%	100%	100%	100%	100%
2	12%	84%	68%	71%	56%	39%	27%	29%	67%
3	32%	36%	68%	77%	0%	7%	49%	24%	50%
4	24%	47%	10%	79%		51%			24%
5	12%		0%			17%			
6	0%		9%						

Hsin-Hsi Chen (NTU) 98

Assessors' Evaluation

Event Name	Document	Question-	Reading-Time	
	Reduction Rate	Answering	Reduction Rate	
		Correct Rate		
1. military service	64.53%	100%	45.24%	
2. construction	30.27%	33.33%	33.54%	
permit				
3. landslide in	46.35%	80%	10.28%	
Shan Jr				
4. Bush's sons	17.59%	100%	36.49%	
5. Typhoon Babis	44.20%	100%	35.10%	
6. stabilization	49.03%	100%	18.49%	
fund				
Average	43.79%	88.46%	30.86%	

Hsin-Hsi Chen (NTU)

Issues in Multilingual Summarization

- Translation among news stories in different languages
- Idiosyncrasy among languages
- Implicit information in news reports
- User preference

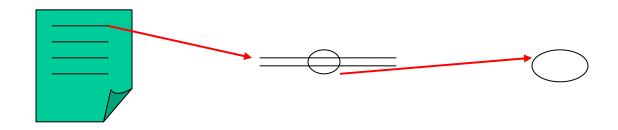
Internet multi-lingual document sources source documents Document preprocessing **Document Clustering** Documents clustered by events **Document Content Analysis**

Issues

- How to represent Chinese/English documents?
- How to measure the similarity between Chinese/English representations?
 - word/phrase level
 - sentence level
 - document level
- Visualization

Document Preprocessing

Comparable Units

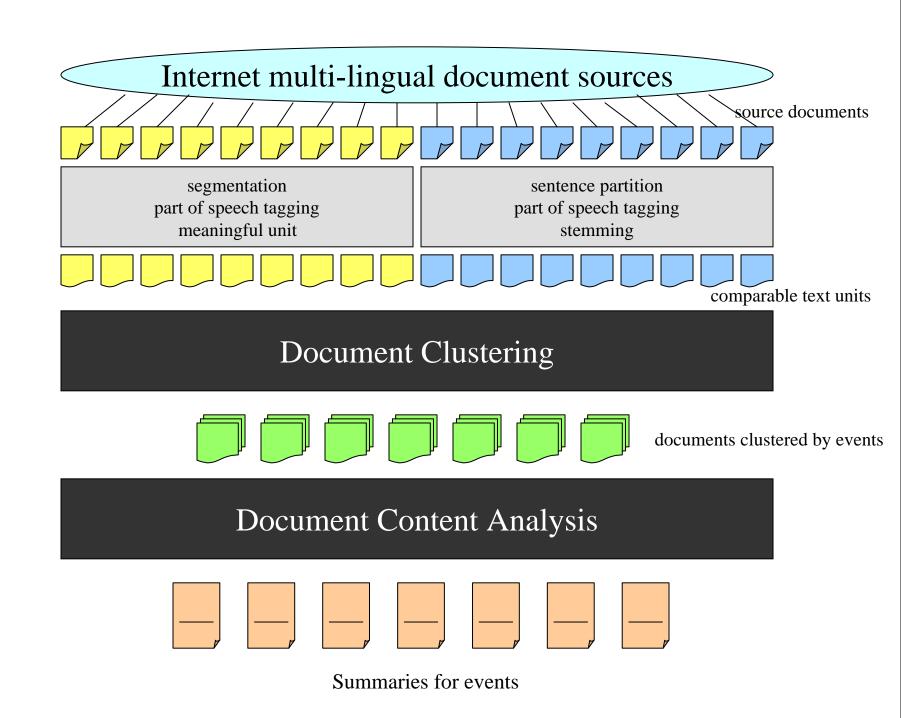


document passage word

Chinese document meaningful unit word (segmentation)

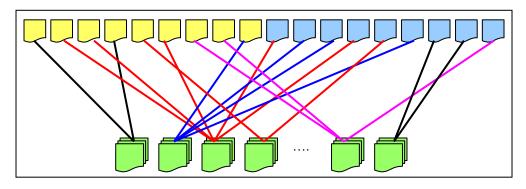
English document sentence word

Hsin-Hsi Chen (NTU)

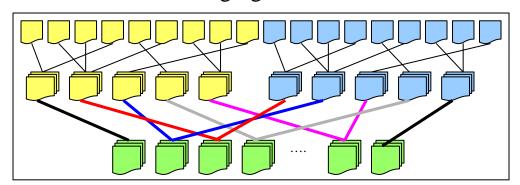


Document Clustering

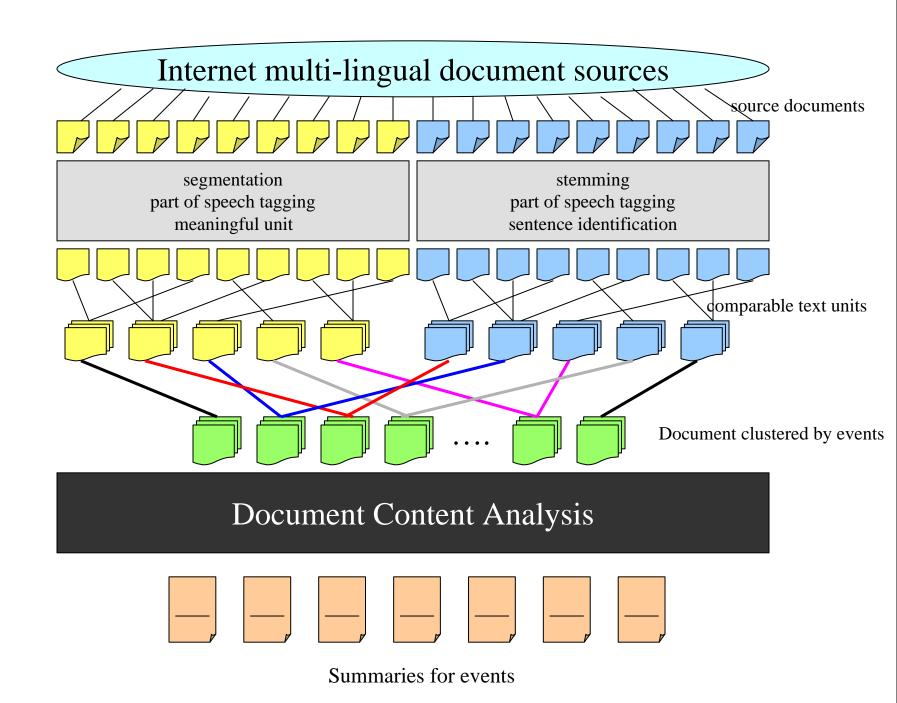
Alternative 1: Clustering English and Chinese documents TOGETHER

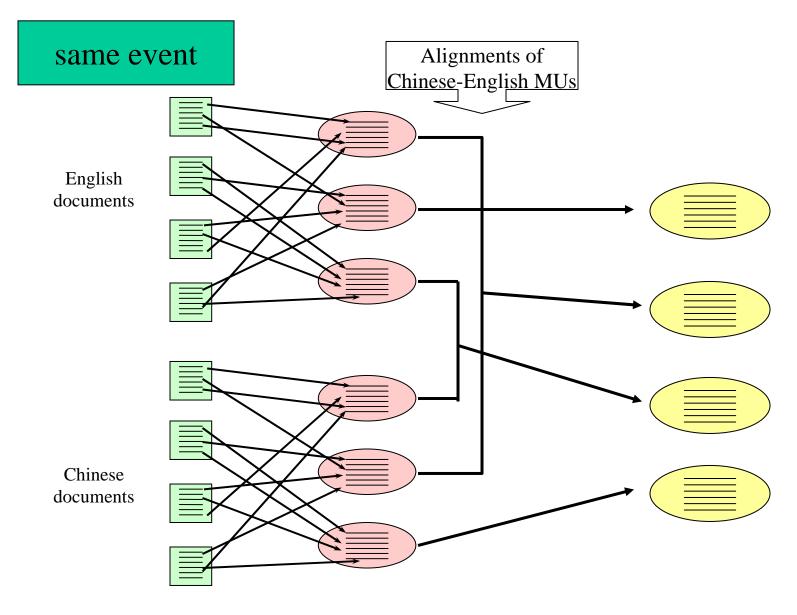


Alternative 2: Clustering English and Chinese documents SEPARATELY and merging clusters



Hsin-Hsi Chen (NTU)



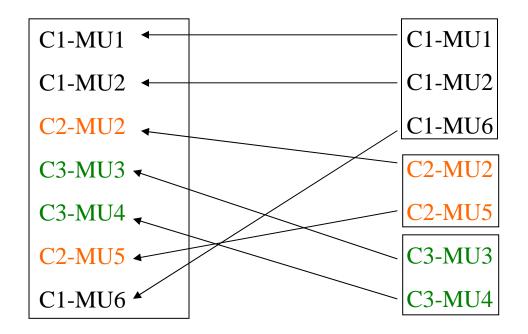


monolingual MU clustering

bilingual MU clustering

Visualization

Focusing summary



Hsin-Hsi Chen (NTU)

Visualization

focusing summarization

C1-MU1

C1-MU2

C2-MU2

C3-MU3

C3-MU4

C2-MU5

C1-MU6

E2-MU1

E1-MU2

E1-MU3

E2-MU1

E1-MU2

E1-MU3

E5-MU3

E6-MU4

E2-MU5

C2-MU1

C3-MU2

C3-MU3

C1-MU6

Prefer English

Hsin-Hsi Chen (NTU)

Prefer Chinese

109

Visualization

browsing

中文1-1 中文1-2 中文1-3 中文1-4 中文1-5 中文1-6 中文2-1 <u>中文2-2</u> 中文2-3 <u>中文2-4</u> <u>中文2-5</u> 中文3-1 中文3-2 <u>中文3-3</u>

<u> 中文4-1</u> <u> 中文4-2</u>

英文1-1 英文1-2 *英文1-3 英文1-4 英文1-5* <u>英文2-1</u> <u>英文2-2</u> <u>英文2-3</u>

Summary

- Topic Detection and Tracking
 - Topic Detection
- Summarization
 - Multiple Document Summarization
 - Multi-Lingual Multi-Document Summarization