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Abstract—Capturing users’ future search actions has many 
potential applications such as query recommendation, web 
page re-ranking, advertisement arrangement, and so on.  This 
paper predicts users’ future queries and URL clicks based on 
their current access behaviors and global users’ query logs.  
We explore various features from queries and clicked URLs in 
the users’ current search sessions, select similar intents from 
query logs, and use them for prediction.  Because of an intent 
shift problem in search sessions, this paper discusses which 
actions have more effects on the prediction, what 
representations are more suitable to represent users’ intents, 
how the intent similarity is measured, and how the retrieved 
similar intents affect the prediction.  MSN Search Query Log 
excerpt (RFP 2006 dataset) is taken as an experimental corpus. 
Three methods and the back-off models are presented. 

Keywords-action prediction; intent mining; query logs 
anallysis  

I. INTRODUCTION 

Understanding what users are doing in the current search 
sessions, and predict what they will do in the future sessions 
have many potential applications such as query 
recommendation, web page re-ranking, advertisement 
arrangement, and so on.  In this paper, we predict users’ 
future actions (i.e., queries and clicked URLs) based on their 
current access behaviors and global users’ query logs. 

In a search session, a user submits a sequence of queries 
intertwined with URL clicks.  After each query submission 
or URL click, we predict the queries and URLs that the user 
will submit or click during the remainder of the session.  
Correct predictions can facilitate users’ search processes, 
order the resulting web pages, or arrange suitable 
advertisements. 

This problem is defined formally as follows. Let s = (a1,
a2, a3, …, an) be a search session of a user, where each action 
ai (1 i  n) is either a query submitted by the user or a URL 
clicked by the user.  Session s lasts from the user’s web 
browser’s initial connection to the search engine to the time 
of a timeout between the web browser and the search engine.  
The actions a1, a2, …, an are ordered by the time of their 
occurrences, with a1 having the earliest occurrence time. 
Session s can be divided into different pairs (H1, F1), (H2,
F2), …, (Hn-1, Fn-1) where Hj and Fj are two action sequences 
such that Hj = a1, a2, …, aj and Fj = aj+1, aj+2, …, an.  We can 
view Hj as a history of the actions a1, a2, …, aj that a user has 
performed so far during s, and Fj as the future actions aj+1,

aj+2, …, an that the user will perform during the remainder of 
s.  The goal is to predict Fj given that Hj is known. 

To predict the future actions in Fj based on the current 
actions in Hj, we postulate the search intents embedded in the 
actions are coherent and extract the actions of the similar 
intent in query logs for prediction.  The intent shift is one of 
the major challenging issues in predicting next search actions.  
The actions in Hj may contain more than one intent.   
Similarly, a user may change her search intent during Fj.  An 
extreme case is the intent of action aj+1 may be different from 
the intent in Hj.  That is, there is an intent shift between aj
and aj+1.

This paper investigates which actions have more effects 
on the prediction.  In other words, we would like to know if 
using all of the information in the list of queries and URLs 
that a user has already submitted or clicked in a session is 
more accurate in predicting a user’s future actions than using 
only the user’s most recent submitted queries and clicked 
URLs.  Some other research issues include what 
representations are more suitable to represent users’ intents, 
how the intent similarity is measured, and how the retrieved 
similar intents affect the prediction.  

The rest of this paper is organized as follows.  The 
related work is presented and compared in Section II.  The 
experimental corpus used in this study is described in 
Section III.  Three prediction methods and their 
combinations are proposed in Section IV.  Experimental 
results are shown and discussed in Section V.  Lastly, 
Section VI concludes the remarks. 

II. RELATED WORK

Several research topics are closely related to our research 
such as query suggestion, URL recommendation, and 
context-aware ranking. 

The goal of query suggestion is to recommend a set of 
queries which are related to a user’s current search intent. 
Fonseca et al. [1] compute the similarity between a user’s 
current query and a set of candidate queries, and propose the 
candidate queries which have the highest similarity scores.  
In 2006, Zhang and Nasraoui [2] convert each session in a 
query log dataset into a graph of query nodes, and compute 
the relatedness of the queries based on the queries’ path 
distance from each other.  Similarly, Boldi et al. [3][4] create 
a large directed graph out of the queries in a query log 
dataset.  Query suggestions are made by performing 
PageRank on the graph and recommending the queries with 
the highest PageRank values.  In 2010, Cheng et al. [5] 
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suggest queries related to the webpage that a user is currently 
browsing. 

The goal of URL recommendation is to suggest a set of 
URLs which are related to a user’s current search intent. 
Wang et al. [6] present a method to predict the future clicked 
URLs of a user after the user has input a query.  Their 
prediction method aims at generating the URLs that a user 
will click during the remainder of a user search session. 

In the study of context-aware ranking, the documents in 
the search results are ranked by taking a user’s past search 
actions into consideration.  In 2005, Shen et al. [7] perform 
context-aware document ranking by promoting URLs that 
are more similar to a user’s past queries and clicked URLs. 
Agichtein et al. [8] combine users’ past click actions with 
traditional information retrieval model BM25 to rank the 
results returned by a search engine.  A recent study by Xiang 
et al. [9] uses learning-to-rank algorithms to re-rank search 
engine results.  

Another closely-related research topic is personalized 
search, which can be seen as context-aware ranking tailored 
to a specific user. This research topic requires query logs 
which are annotated with user identification information. 
Dou et al. [10] report that doing personalized search by 
proposing the documents that a user clicks the most often in 
the past with respect to a query performs very well.  To deal 
with the problem of the sparseness of individual user data, 
Qiu and Cho [11] construct a topic-level abstraction of query 
logs.  They then exploit a user’s preferred topics in 
personalized search.  Teevan et al. [12] go beyond the 
boundary of search engine query logs by incorporating a 
user’s offline desktop search information in their 
construction of a user preference profile. 

Cao et al. [13] study context-aware ranking and employ 
variable length Hidden Markov Model to suggest queries and 
URLs.  Although Cao et al. perform query suggestion and 
URL recommendation, our research goal differs from theirs 
in that they focus on predicting the next immediate queries 
and URLs, and they treat query suggestion and URL 
recommendation as separate tasks. In contrast, our goal is to 
generate a unified sequence of queries and clicked URLs 
representing the complete action sequence of a user. 

III. A QUERY LOG DATASET

The corpus we use is the MSN Live Search Query Log 
excerpt (RFP 2006 dataset) [14], which consists of 7,470,915 
search sessions dating from May 1st, 2006 to May 31st, 2006.  
Each session is a sequence of submitted queries and clicked 
URLs by a user. The exact query strings and clicked URLs 
in a session are visible.  All query submissions and URL 
clicks are time-stamped.  The sessions are anonymous.  We 
normalize query strings to lower cases, and merge 
consecutive spaces into a single space. 

First, we separate the MSN Live Search Query Log 
excerpt into training and testing datasets.  Sessions belonging 
to the time period from May 1st, 2006 to May 24th, 2006 
form the training set denoted by Tr.  In total, 5,961,827 
sessions are included. The set of unique actions in Tr is 
denoted by ATr.

Next, we divide the sessions within May 25th, 2006 and 
May 31st, 2006 into six groups according to the number of 
queries in the sessions.  The sessions in the six groups 
contain one, two, three, four, five, and at least six queries, 
respectively.  Table I shows the distribution of the sessions 
by the number of queries.  Intuitively, the distribution is 
highly skewed to the smaller query counts.  If we sample 
uniformly over the original set, we would obtain very few 
long sessions with respect to the number of queries, making 
the performance analysis of long sessions unrepresentative.  

Finally, we randomly select a sizeable number of 
sessions from each group.  For the group with a single query, 
we remove the sessions containing no clicked URLs before 
sampling, because these sessions are not long enough to 
make at least one prediction possible.  Our final testing 
dataset contains 1,200 sessions from the period of May 25th 
to May 31st.  This testing dataset is denoted by Te.

A testing session s consisting of n actions will have n-1 
pairs of historical portion H and future portion F, i.e., (H1,
F1), (H2, F2), …, (Hn-1, Fn-1). There is a prediction for each 
(Hj, Fj).  In Te, total number of predictions is 7,192. 

TABLE I. DISTRIBUTION OF SESSIONS W.R.T QUERY COUNTS.

Query Count 1 2 3 4 5  6
Percentage 60.4 18.5 8.56 4.54 2.63 5.37

IV. PREDICTION METHODS

In this section, we present three methods to predict future 
actions.  How to use collective intelligence in search query 
logs is specified. 

A.  WTAL 
The basic idea of the first method is: the actions in a 

search session are coherent, and the actions in the query logs 
co-occurring frequently with the actions in the historical 
portion of a given search session may be probable to appear 
in its future portion.   

The first method called weighted tally (abbreviated 
WTAL) computes the relevance between a candidate action 
a ATr and the recent search action a in the historical 
portion H of a search session s. The relevance score 
WTALSC of a  and a is measured by their co-occurrence in 
search query logs Tr as follows.  

WTALSC(a , a, H) =  
1

, : , ,r i j i j j iX T a a X a a a a j i            (1) 

where X is a session in training set Tr, a is the i-th action of X
(i.e., ai=a), and a’ is the j-th action of X (i.e., aj=a’). The 
value 1/(j–i) (where j>i) denoting a relevance degree of a’
and a is higher when the candidate action a’ is closer to a in 
X, i.e., (j–i) is smaller.  WTALSC sums the relevance scores 
of a and a’ in all the sessions containing a and a’.  The 
WTALSC scores of all a ATr are computed, and the 
candidate actions are sorted in the descending order of their 
WTALSC scores. 
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B. SRPF
Different from the surface matching of actions in WTAL, 

the second method considers more action semantics from 
different sources.  The second method called Session 
Retrieval with Prediction by Frequency (abbreviated SRPF) 
is shown in Figure 1.   It includes three major steps: Indexing,
Searching, and Predicting.  The training sessions in terms of 
various action semantics are indexed by Indri toolkit1.  The 
context in the historical portion H is employed to retrieve the 
relevant sessions in the query logs.  They are used to predict 
the future actions in the portion F.

Figure 1. SRPF system architecture. 

1) SRPF Indexing Step: In this subsection, we describe 
the indexing step in Figure 1.  Various types of information 
are used to describe an action, and thus a session.  The first 
step of the SRPF method is to convert each session in the 
training corpus into a pseudo text document for indexing by 
Indri toolkit.  We extract the text strings of the nine fields 
listed in Table II from each training session. 

TABLE II. SESSION INFORMATION.

Field Group Information 
f1 G1 Query terms 
f2 G2 Clicked URLs 
f3 G2 Clicked URLs’ domain names 
f4 G3 Clicked URLs’ ODP category paths 
f5 G3 Clicked URLs’ ODP category unigrams 
f6 G3 Clicked URLs’ ODP category path 

descriptions 
f7 G4 Clicked URLs’ webpage titles listed in the 

ODP database 
f8 G4 Clicked URLs’ webpage content 

descriptions listed in the ODP database 
f9 N/A Clicked URLs’ webpage contents 

In Table II ODP refers to the Open Directory Project2,
which is an online database of URLs manually annotated 
with information.  Each URL in the ODP database is 
assigned at least one category path from the ODP’s category 
hierarchy.  For example, one of the ODP category paths of 

                                                          
1 http://www.lemurproject.org/indri.php/ 
2 http://www.dmoz.org/ 

Microsoft Corporation (http://www.microsoft.com/) is 
Computers/Companies/Microsoft_Corporation. ODP 
category unigrams refer to the individual levels in the ODP 
category path.  For example, the unigrams of Computers/ 
Companies/Microsoft_Corporation are Computers, 
Companies, and Microsoft_Corporation. The ODP database 
further contains a textual description for each category path. 
In addition, the ODP database provides a webpage’s title and 
content description. 

For the clicked URLs’ webpage contents, we download 
the contents of the clicked URLs in the training corpus. 
Since sessions in the query logs are from the May of 2006, 
some webpages no longer exist.  In Tr, there are 4,033,272 
unique URLs.  We are able to retrieve webpages for 
1,945,490 URLs, 48.24% of a complete set. 

After all of the sessions in Tr are converted into pseudo 
text documents, we index these documents using the Indri 
toolkit to obtain a database of training sessions ready for 
retrieval. 

2) SRPF Searching Step: In this subsection, we describe 
the searching step in Figure 1.  The goal of this step is to 
retrieve the training sessions related to current user’s search 
context H.  The intent of the historical portion is represented 
in the similar way as specified in previous section.  SRPF 
extracts from H the text strings in the fields f1 to f8 listed in 
Table II and regards them a pseudo text query for retrieving 
the relevant sessions in Tr.

To test the influence of these eight fields on the final 
prediction performance, we explore different field 
combinations when formulating an Indri query in our 
experiments.  We group the fields to reduce the number of 
combinations.  The fields’ groups are shown in Table II.  
Because the ODP coverage of the URLs in the entire corpus 
is low (5.45%), to prevent having many empty Indri queries, 
we do not use G3 and G4 alone.  In the end, twelve 
combinations of the four groups are tested and Table III lists 
details. 

TABLE III. COMBINATIONS OF FIELDS TESTED

Field Group Combination Member Field Groups
Cobination 1 G1 
Cobination 2 G2 
Cobination 3 G1, G2 
Cobination 4 G1, G3 
Cobination 5 G2, G3 
Cobination 6 G1, G2, G3 
Cobination 7 G1, G4 
Cobination 8 G2, G4 
Cobination 9 G1, G2, G4 

Cobination 10 G1, G3, G4 
Cobination 11 G2, G3, G4 
Cobination 12 G1, G2, G3, G4 

Indri provides various retrieval models listed in Table IV 
IR1 and IR2 are BM25 and TF-IDF, respectively.  IR3 is 
based on a combination of language model and inference 
network.  Indri also supports the indexing of structured 
documents.  That is, when converting a training session into 
a text document, we can track which of the eight fields f1 to 
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f8 a text token is extracted from.  This information is used 
with the structured queries of IR4 to allow only the matches 
of text tokens in an Indri query and a training session 
document text of the same field.  In the experiments, we set 
the maximum number of retrieval sessions to 1,000. 

TABLE IV.  IR MODELS FOR RETRIEVING TRAINING SESSIONS.

IR Model Explanation 
IR1 BM25 
IR2 TF-IDF 
IR3 Indri retrieval model 
IR4 Indri retrieval model with structured query

3) SRPF Predicting Step: This subsection describes the 
predicting step Figure 1.  After retrieving training sessions 
related to H, the SRPF method tallies the frequencies of the 
actions in the retrieved training sessions.  Actions with top 
frequencies are proposed as a user’s future queries or clicked 
URLs.

When tallying the frequencies of actions in the retrieved 
training sessions, we have two different weighting schemes. 
The first weighting scheme is to have an equal weight for 
every occurrence of an action.  The ranking score of an 
action a in the retrieval result of H is computed as:  

FREQ(a, H) = 

)( : 1HRETRX aaXa ii                  (2) 

where RETR(H) is the set of training sessions in the retrieval 
result of H, X is a session (i.e., an action sequence), and a is 
the i-th action in X.  The list of actions in the retrieval result 
of H is sorted in the descending order of their FREQ scores 
and considered as candidates. 

Different from the binary weighting in the first scheme, 
the weight of an action in the second scheme is the relevance 
score of the retrieved training session containing the action. 
The ranking score of an action a with respect to H is 
computed as: 

WFREQ(a, H) = 

)( : ),(HRETRX aaXa ii
HXREL      (3) 

where REL(X, H) is the relevance score of session X with 
respect to the retrieval result of H.

When tallying the frequencies of queries and clicked 
URLs, we also incorporate a technique for eliminating the 
portion of a retrieved training session which is similar to H
from tallying because we postulate that users will not do 
similar actions in F.  To be exact, for a retrieved training 
session s = (a1, a2, a3, …, an), let j be the largest number such 
that aj s and aj H. Then we keep only the subsequence s
= (aj+1, aj+2, aj+3, …, an).  In the experiments, we use the 
notation ELIM to indicate that the elimination is used. 
Conversely, NoELIM means that elimination is not used. 

In summary, the combination of information fields, IR 
models, ranking score functions, and elimination functions 
give us 192 variants of SRPF. 

C. ACTF 
In this subsection, we present the action flow graph 

method, abbreviated ACTF. This method is an extension of 
Boldi et al.’s [3] query flow graph method for query 
suggestion. 

In their work, Boldi et al. use a query log corpus to 
construct a directed graph of queries, called a query flow 
graph. In this graph, each node is a query that appears in the 
query logs.  There is a directed edge from a query qi to 
another query qj if and only if qj appears immediately after qi
time-wise in a search session.  Boldi et al. use a modified 
version of the PageRank algorithm on their query flow graph 
to increase the weights of the query nodes near the nodes 
representing the queries that a user has already submitted.  
The queries with top PageRank scores are proposed to users 
as suggested queries. 

We extend Boldi et al.’s query flow graph algorithm to 
ACTF as follows.  Instead of creating a graph out of queries, 
we construct a graph out of both queries and clicked URLs. 
This graph is called an action flow graph.  In the graph, each 
node is either a query or a clicked URL that appears in Tr.
There is an edge from node ai to node aj if aj immediately 
follows ai in a search session.  The weight of an edge from ai
to aj is f(ai, aj)/f(ai), where f(ai) is total occurrences of ai in Tr,
and f(ai, aj) is the number of occurrences of aj immediately 
follows ai in a session in Tr.

The complete action flow graph constructed from the 
training corpus contains 9,417,766 nodes and 16,992,035 
edges.  To reduce the computation time of the PageRank 
algorithm, we prune the action flow graph by keeping only 
the nodes a H and the descendant nodes a  of a such that 
the edge connecting a  to its parent has a weight of at least 
0.05.  We generate a list of predicted future actions from the 
pruned graph and sort them in the descending order of their 
PageRank values.  

V. EXPERIMENTS AND DISCUSSIONS

In this section, we present the experimental setup, 
evaluation metrics, performance, and discussions. 

A. Experimental Setup 
The goal of the experiments is to determine how well our 

methods perform in predicting the future actions of a user. 
More formally, each method has to perform the task of 
predicting F given H is known.  In the experiments, each 
prediction method predicts an action sequence for each of the 
7,192 prediction tasks. The quality of a prediction sequence 
is determined based on how closely the prediction sequence 
resembles a user’s real future action sequence F.

We use four evaluation metrics including R-Precision, 
LCSF, ExactMatch and First1.  Let L be an action sequence 
generated by a prediction method. R-Precision measures the 
fraction of the first |F| actions in L that is correct. LCSF 
determines the longest common subsequence between F and 
the first |F| actions in L, and measures the performance by 
the ratio of the subsequence to F.  ExactMatch measures the 
length of the longest identical consecutive portions of F and 
L starting from the first action in F and L, and expresses the 
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length as a fraction of |F|.  First1 measures whether the first 
action of F is the same as the first action of L.  If yes, then 
the First1 score is 1, othereise it is 0. 

We use two approaches to average the performance 
scores over the 7,192 prediction tasks.  The first approach is 
to divide the total performance score by 7,192.  This 
averaging approach is denoted by AVG in the experimental 
results.  However, this average is not representative of the 
real-world performance, because the testing sessions are first 
grouped according to query count before sampling (see 
Section III).  In the second approach, the prediction tasks are 
grouped by query counts in testing sessions.  The average 
performance within each group is then computed.  Then we 
compute the weighted average of the groups’ scores using 
the weights listed in Table I.  This second average score, 
denoted by WAVG, is representative of the real-world 
performance. 

As a comparison to our methods, we use Wang et al.’s
Simu0Default method in [6] on our corpus. Although Wang 
et al. also present other methods in [6], we do not use them 
because their other methods rely on knowing the correct 
answer before making a prediction, which is not possible in 
the online, real-world setting that we simulate in our 
experiments. 

B.  SRPF Critical Features 
By varying the features of SRPF, we obtain 192 variants 

(See Section IV.B).  In this subsection, we examine SRPF’s 
most critical features.  Figure 2 shows the best SRPF variants 
for each of the eight measures. Variant 1 uses f1, IR1,
WFREQ and ELIM. Variant 2 uses f1, f2, f3, IR1, WFREQ and 

NoELIM. Variant 3 has the same features as Variant 1. 
Variants 4, 6 and 8 have the same features as Variant 2. 
Variant 5 uses f1, f2, f3, IR1, WFREQ and ELIM. Variant 7 has 
the same features as Variant 5. 

To study which features are more critical in the 
prediction, we perform paired t-tests on each of the eight 
variants in Figure 2 against all other 191 variants.  This 
analysis procedure is best explained through an example. 
Take Variant 1 as an example.  Paired t-tests are performed 
on the performance measure that Variant 1 excels in WAVG 
R-Precision.  After performing the paired t-tests on Variant 1 
against all other 191 variants, we consider the group of 
variants whose WAVG R-Precision scores are not 
statistically significantly different (p-value  0.01) from 
Variant 1 as the leading performance group for the WAVG 
R-Precision measure.  Common features in this group are 
identified and regarded as the most important features 
contributing to the WAVG R-Precision score.  The same 
procedure is repeated for the other seven variants on their 
corresponding top-performing measures.  Note that for the 
statistical significance tests on WAVG scores, we use the 
approximation weighted paired t-test method described in 
Donner and Donald’s work [15]. 

Results of the aforementioned paired t-test procedure are 
shown in Table V.  We see that f1 (i.e., the use of query terms 
when converting H into an Indri query) is present for all 
eight performance measures. 
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Figure 2.  The best eight SRPF variants. 
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TABLE V.  SRPF CRITICAL FEATURES.

Performance Measure Leading 
Performance 
Group Size 

Common  
Features 

WAVG R-Precision 28 f1

AVG R-Precision 7 f1, f2, f3, WFREQ,
NoELIM 

WAVG LCSF 25 f1, ELIM 
AVG LCSF 6 f1, f2, f3, WFREQ,

NoELIM 
WAVG ExactMatch 25 f1, ELIM
AVG ExactMatch 24 f1

WAVG First1 24 f1, ELIM 
AVG First1 15 f1, WFREQ 

C. Performance Comparison across Methods 
In this subsection, we compare the performance of the 

proposed methods to identify the best one.  Figure 3 shows 
the performance of our three major methods and Wang et 
al.’s method. In Figure 3, SRPF Variant 1 from Figure 2 is 
used to represent SRPF.  Although the other seven SRPF 
variants are not shown in Figure 3, their performance scores 
are also ranked between ACTF and Wang et al.’s methods as 
SRPF Variant 1 in Figure 3.  
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Figure 3.  Performance of different methods. 

In Figure 3, WTAL has the best performance for all 
measures except AVG R-Precision. Statistical analysis 
indicates that, except for AVG LCSF, WTAL’s performance 
in its dominating measures is statistically significantly higher 
than that of other methods with p-value < 0.01.  For AVG 
LCSF, the performance difference between WTAL and 
ACTF is not statistically significant, but the difference is 
statistically significant between WTAL and all other 
methods.  As for AVG R-Precision, ACTF has the best 
performance.  However, the difference between ACTF’s 
AVG R-Precision and WTAL’s is not statistically significant.  
ACTF’s AVG R-Precision is statistically significantly higher 
(p-value < 0.01) than the other two methods’.  In summary, 
WTAL performs statistically significantly better than all 

other methods in six of the eight measures.  Hence, we 
consider WTAL to have the best overall performance. 

The performance of Wang et al.’s method is much lower 
than the other methods.  There are several possible reasons 
for the low performance.  First, Wang et al.’s method is 
designed to predict only clicked URLs, but in our evaluation, 
we require a method to predict both queries and clicked 
URLs.  Hence, the performance of Wang et al.’s method 
may be hindered by its lack of query predictions.  To explore 
this factor, we perform a separate evaluation of Wang et al.’s
method where we remove every query from F.  Results show 
that the change in performance is very small (i.e., maximum 
absolute performance difference is 0.0004 for all eight 
performance measures).  Thus, the inability to predict queries 
is not a major factor contributing to low performance.  
Another possible reason is that Wang et al.’s method uses 
only the queries which appear at least five times in the 
training corpus, so a substantial amount of useful 
information in the training corpus may be filtered out.  A 
third possible reason may be the simulation of snippet 
generation in our implementation of Wang et al.’s method.  
In Wang et al.’s work, a pseudo text document for each 
query consists of the query’s associated clicked URLs’ 
snippets generated by a commercial search engine.  In our 
work, we simulate snippet generation by extracting the 
words that are within ten words from a query term from the 
clicked URLs’ HTML files we download.  Using this snippet 
generation method, we are only able to generate snippets for 
23.79% of the clicked URLs. Wang et al.’s original snippet 
generation method may have a better coverage. 

D.  Effectiveness of Information in H 
We observe WTAL has the best overall performance is 

due to the fact that WTAL uses only very recent information 
in H.  That is, WTAL uses only the information associated 
with a user’s most recent query in H to make a prediction of 
future actions.  This realization leads us to speculate the 
importance of the older information in H in the prediction of 
future actions.  To investigate further, we change SRPF 
Variant 1 to use only the information in H up to the most 
recent query, the most recent 2 queries, the most recent 3 
queries, and the most recent 4 queries only.  This 
modification effectively gives us four sub-variants of SRPF 
Variant 1.  We examine the performance of these sub-
variants to determine the effectiveness of the historical 
information in H with respect to how many recent queries 
are considered in prediction. 

Figure 4 shows the performance of SRPF Variant 1 using 
different amounts of information in H.  In the figure’s legend, 
the notation Size = n means that this particular variant uses 
only the information from the current action up to the n most 
recent queries in H.  The notation Size = All means that all 
information in H is used (i.e., the original SRPF Variant 1).  
We call these as the history window sizes.

In Figure 4, history window size 1 has the best 
performance in all eight measures.  This observation entails 
that for SRPF Variant 1, using more and older information in 
H does not improve performance.  Intent shift may be one of 
the possible reasons. 
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Figure 4.  Effects of SRPF history window size. 

E. Performance by Session Query Count 
In Section III, we separate testing sessions prior to 

sampling into six groups according to session query count. In 
this subsection, we study our methods’ performance for each 
of these six groups. 

Figure 5 shows the performance of our methods with 
respect to session query count.  For each of the six query 
count groups, its performance is obtained by taking the non-
weighted average of the performance of the prediction tasks 
within the group. 

In Figure 5, a trend is that, in almost all cases, the 
performance of a method decreases as the number of queries 
increases in a session.  Since the WAVG scores give higher 
weights to the better-performing, smaller query count groups, 
the WAVG scores are higher than the AVG performance 

scores. This explains why in Figure 2 to Figure 4 the WAVG 
scores are always higher than their AVG counterparts. 

As to why performance drops as the number of queries 
per session increases, we conjecture as the number of queries 
per session increases, the variety of information contained in 
a session also increases.  And a testing session with a wider 
information variety will have more queries and clicked 
URLs that are not in the training set, which results in more 
cases that are impossible to predict using our methods.  To 
examine whether the query log corpus supports this 
conjecture, we compute the average coverage rate of testing 
session queries and clicked URLs in Tr with respect to the 
number of queries in a testing session.  We find that the 
single query testing sessions have the highest coverage of 
60.01%.  The coverage decreases as query count increases, 
and drops to 40.30% for the group with at least six queries.  
This observation supports our conjecture that testing sessions 
with more queries contain more information that are not 
present in the training set, and hence make more future 
queries and clicked URLs impossible to predict. 

F. Back-off Methods 
Figure 3 shows that WTAL has the best performance in 

general, ACTF comes in second, and SRPF comes in third.  
This order is the opposite order of the methods’ coverage 
capabilities, which is the ability to generate a non-empty 
prediction.  WTAL has the lowest coverage capability of 
34.18%, because it requires the most recent query in H to 
appear in Tr.  ACTF has the second lowest coverage 
capability of 69.35%, because it requires at least one query 
or clicked URL in H to appear in Tr.  SRPF has the highest 
coverage capability of 99.49%, because its IR models for 
training session retrieval allow non-exact matches between 
the actions in H and the training sessions. 
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Figure 5.  Performance by session query count. 
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The opposite order relationship of performance and 
method coverage capabilities gives us an insight on 
improving performance.  In a nutshell, we use high coverage 
capability, low performance methods to back off the low 
coverage capability, high performance methods when high 
performance methods cannot yield a prediction.  In this way, 
we propose three combinations: WTAL-SRPF, ACTF-SRPF, 
and WTAL-ACTF-SRPF consulted in the order of coverage.  
For WTAL-SRPF, if WTAL is unable to generate a 
prediction, then SRPF is used.  The same idea applies to 
ACTF-SRPF.  For WTAL-ACTF-SRPF, if WTAL is unable 
to generate a prediction, then ACTF is used.  If ACTF is also 
unable to generate a prediction, then SRPF is used.  We use 
SRPF Variant 1 in Figure 3 as the SRPF method in all 
combined methods involving SRPF. 

Figure 6 shows the performance of the combined 
methods.  WTAL is shown for comparison.  In the figure, 
WTAL-ACTF-SRPF has the best performance in all 
measures, and it performs better statistically significantly 
than WTAL with p-value < 0.01 in every measure.  Thus, 
combining the methods together indeed enhances the overall 
performance. 
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Figure 6.  Performance of Back-off methods. 

VI. CONCLUSION AND FUTURE WORK

In this work we predict user future action sequence based 
on their current search actions and global search engine 
query logs.  We propose three different methods including 
WTAL, SRPF and ACTF to deal with this problem.  
Experimental results show that WTAL has the best 
performance, but has a low coverage problem.  Merging the 
individual methods together achieves the best performance.  
Experimental results also show that using more historical 
search information in a user’s search session is not 
guaranteed to be helpful to improve prediction performance.   

It is more challenging to predict future actions of the 
sessions containing many queries.  In the future, we plan to 
further improve the correctness of the prediction sequence 
order of the proposed approaches.  In addition, we will use 

the predicted queries and clicked URLs as hints for 
advertisement recommendation. 
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