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Abstract 
 

With the growth of software project scale, how 
to deliver reliable software products on time becomes 
a critical issue. Although many related software 
reliability theories have been proposed in the past few 
decades, most of software reliability analysis 
processes still depend on the powerful computations 
of the general-purposed numerical software. Hence, 
to develop a user-friendly special-purposed software 
reliability assessment tool is extremely meaningful 
for both research and business application. For these 
reasons, this paper presents the design and implement 
of Computer-Aided Reliability Assessment Tool for 
Software (CARATS). CARATS is an object-oriented 
software reliability assessment tool using software 
reliability growth models (SRGMs) with period 
failure count data and neural networks to assessment 
the software reliability. Due to the characteristics of 
the special-purposed and object-oriented design, 
CARATS can analyze the software reliability easily. 
Besides, it is more flexible to adopt different SRGMs 
than traditional tools. 
 
1. Introduction 

The techniques of software reliability analysis 
developed based on hardware reliability incipiently. 
As the significance of software grows rapidly, 
software reliability gets more and more attentions. In 
the past few decades, many software reliability 
modeling theories have been proposed, which can be 
classified into two main types: the deterministic 
model and the probabilistic model [1]. 

The deterministic model assesses software 
reliability by analyzing the program texture, such as 
the number of distinct operators and operands and the 
number of assembly instructions in a program. This 
type of model does not involve any random event. On 
the other hand, the probabilistic model treats the 
failure occurrences and removals as probabilistic 
event. This type of model can be classified into 
different groups [1]: 

 error seeding 
 failure rate 
 curve fitting 

 reliability growth 
 nonhomogeneous Poisson process(NHPP) 
 Markov structure 

In this paper, we focus on NHPP probabilistic 
model only. The software reliability growth theory is 
based on the different characteristics between 
hardware and software since software will become 
more reliable after appropriate testing and debugging 
phase. Hence, we can describe the historical failure 
data gathered from the testing phase by NHPP 
models, and these models can represent the software 
reliability growth pattern. 

Modern methods used to estimate the cumulative 
number of failures occurred up to a specific time 
must rely on numerical analysis software mostly. 
However, either operation or execution of general- 
purposed numerical analysis software is very 
inconvenient to analyze software reliability 
systematically since those software tools must be 
compatible with general numerical problems.  

In this research, we implement a special- 
purposed assessment tool, Computer-Aided 
Reliability Assessment Tool for Software (CARATS), 
based on SRGM. CARATS integrates several most 
popular SRGMs, such as GO model, delay S-shaped 
model, Rayleigh model, power model, inflection 
S-shaped model, and so on [1-8]. By inputting failure 
data in plain text format to this tool, CARATS will 
systematically estimate parameters of selected 
SRGMs automatically. Both software reliability 
diagrams and numerical data will be shown based on 
the estimates. 

In addition to the use of SRGMs, we show 
another novel prediction method—prediction of 
software reliability by using neural networks, which 
has been widely used in many fields, such as machine 
learning, stock prediction, and adaptive filters. 
Actually, neural networks can be treated as a black 
box, that is, neural networks can learn to fit almost 
any periodical curves by giving enough training data. 
The concept of predicting software reliability by 
using neural networks has been proposed many years 
ago, but no advanced applications were presented yet. 
Hence, we integrate neural networks into this 
assessment tool. 

In the rest of this paper, five SRGMs and two 
parameter evaluation methods are briefly outlined in 



Section 2. In addition, Section 2 also shows how to 
predict software reliability by using neural networks. 
The implementation details of CARATS are shown in 
Section 3. Besides, Section 4 presents a set of real 
software reliability assessment results. Finally, some 
conclusions are given in Section 5. 
 
2. Background 

In this section, we briefly go through the 
technical backgrounds of CARATS. We only mention 
the fundamental theories of our implementations very 
shortly. 

 
2.1 Software Reliability Growth Model 

We have mentioned that the concept of software 
reliability comes from the concept of hardware 
reliability. Compared with software, the physical 
characteristics make the reliability of hardware 
decrease gradually with time. Eventually, it is 
economically impractical or too unreliable to 
continue in service. However, software cannot be 
treated as hardware because software does not wear 
out as time goes by. In other words, software 
reliability grows with the proceeding of testing and 
debugging. 

The process of estimating the reliability of 
specific software through SRGMs consists of: (i) 
gathering historical failure data in the testing phase, 
and (ii) evaluating suitable value of selected SRGMs 
parameters based on the given failure data. 

Traditionally, there are two common types of 
failure data: time-domain and interval-domain data. 
The time-domain data involve the individual times 
for each occurred failure or the times between two 
succeeded failures, so we also call this kind of failure 
data “time between failure (TBF)” data format. The 
interval-domain data count the cumulative number of 
failures occurred in a fixed period. Hence, we call 
this kind of failure data “period failure count (PFC)” 
data format. 

 
2.1.1 Goel-Okumoto NHPP Model 

The Goel-Okumoto NHPP model is known as 
GO model, which was proposed by Goel and 
Okumoto in 1979 [1-5]. The GO model is 
characterized by the following mean value function: 

)}(exp1{)( tNtm ϕ−−= , 
where N is the number of initial faults in the software, 
and ϕ is the fault detection rate. 

 
2.1.2 Delayed S-Shaped Model 

The delayed S-shaped model was proposed by 
Yamada in 1984 [1, 3-6]. This model is characterized 
by the following mean value function: 

)}(exp)1(1{)( ttNtm ρρ −+−= , 
where N is the number of initial faults in the software, 
and ρ is the fault removal (failure detection and fault 
isolation) rate parameter. 
 

2.1.3 Rayleigh Model 
The Rayleigh model is a member of the family of 

the Weibull distribution [7] and is characterized by 
the following mean value function: 

)}(exp1{)( 2tNtm λ−−= , 
where N is the number of initial faults in the software, 
and λ is the failure rate parameter. 

 
2.1.4 Power Model 

The power model was proposed by Crow in 1974 
[8]. This model is characterized by the following 
mean value function: 

λtNtm ⋅=)( , 
where N is the scale parameter that can be treated as 
the number of failures in the software, and λ is the 
shape parameter. 
 
2.1.5 Inflection S-Shaped Model 

The inflection S-shaped model was proposed by 
Ohba in 1984 [1, 3-6]. This model is characterized by 
the following mean value function: 
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where N is the number of initial faults in the software, 
ϕ is the failure detection rate, and ψ is the inflection 

parameter. 
 

2.2 Parameters Evaluation 
In Section 2.1, we introduced several popular 

SRGMs used in CARATS. After formulating these 
mathematical models, we still have to determine the 
parameters of each model. There are two famous 
methods to determine parameters: least squares 
estimation (LSE) and maximum likelihood estimation 
(MLE) [1, 4-5, 9-12]. 

We can evaluate suitable parameters of selected 
SRGM by minimizing the least square sum as the 
following: 
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where mk is the cumulative number of failures 
consumed in time (0, tk], and m(tk) is the cumulative 
number of failures estimated by the given model. 

Compared with LSE method, MLE method is 
much more complex. The likelihood function is 
defined as the following: 
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where mk is the cumulative number of failures 
observed in (0, tk], and m(tk) is the cumulative 
number of failures estimated by the given model. 
Taking the logarithm of the likelihood function in (7), 
we have 
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By replacing m(tk) with the selected model 
formula and solving the partial differential equations, 
we can determine the value of each parameter. 

However, these two methods discussed above are 
not suitable for our object-oriented design due to the 
lack of scalability, so we can also use a model 
independent alternative, which will be shown in 
Section 2.3. 

 
2.3 Prediction of Software Reliability Using NN 

In this section, we present a parameter-free way 
to predict software reliability. Hence, we do not have 
to spend extra computing cost on determining the 
value of parameters. 

Neural networks are constructed by variable 
number of neurons, and each one has its bias and 
weight. In the training process, neurons adjust their 
biases and weights to reach a given goal, and the final 
outputs are evaluated by a specific activation function, 
which is to limit the amplitude of output of a neuron 
[13]. After training with representative historical data, 
neural networks can predict the software reliability 
growth model. 

 
3. System Description 

The UML class diagram of CARATS is shown in 
Fig. 1, which consists of five sub-diagrams. 
 

Fig. 1 CARATS UML class diagram. 
 
3.1 Model Abstraction Module 

This module abstracts software reliability growth 
models. By extending this module, CARATS can 
adopt different SRGMs easily, which shows its 

flexibility. The related UML class diagram of this 
module is shown in Fig. 2. 

 

 
Fig. 2 UML diagram for model abstraction module. 

 
3.2 Parameters Estimation Module 

This module is responsible for the parameters 
estimation. In order to adopt newly extended SRGMs, 
we use numerical method to find out the answer 
instead of calculating and solving the equations case 
by case. Fig. 3 shows the related UML class diagram 
of this module 

 

 
Fig. 3 UML diagram for parameters estimation 

module. 
 
3.3 Neural Networks Prediction Module 

In CARATS, we treat neural networks as a kind 
of model. First, we create and train the neural 
networks based on given PFC data, and then neural 
networks return the estimated number of failures by 
time t after training. Fig. 4 illustrates the related UML 
class diagram of this module. 

 

 
Fig. 4 UML diagram for NN prediction module. 

 
3.4 Graph Abstraction Module 

This module is the data visualizing routine, i.e., 
after fitting curves, this module will translate the 
numerical data into graphical data to enhance 
readability. The related UML class diagram of this 
module is given in Fig. 5. 

 

 
Fig. 5 UML diagram for graph abstraction module. 

(8) 



3.5 User Interface and Internal Data Structure 
A well-designed interface improves usability. 

These graphical user interfaces help user to 
communicate with the internal data structure easier. 
Besides, internal data structure includes some 
routines that relay the requests to lower layer in order 
to execute real calculations. Fig. 6 shows the related 
UML class diagram of this module. 

 

 
Fig. 6 UML diagram for user interface and internal 

data structure. 
 

4. Function Description and Results 
Figures 7-12 show some execution screenshots 

and simulation results of CARATS. 
 

4.1 New Project Creation 
CARATS supports multiple data sets in a project 

and each can have different analysis strategies, such 
as predicting by different models or evaluating model 
parameters by different estimation methods. 
Beginners can perform this tool by following the 
project creation wizard of CARATS. Fig. 7 shows 
three of seven steps in the project creation wizard. 

 
4.2 Overall Picture 

Users can select the desired diagram from the 
treeview in the left side as shown in Fig. 8. 

 
4.3 Viewing and Adjusting Data Set Settings 

After loading data sets and finishing the initial 
estimation, users can adjust settings by means of the 
estimation results and read the brief report from the 
settings dialog as shown in Fig. 9. The “Iterations” in 
the Fig. 9(c) is the number of iterations that CARATS 
spent before models being converged. And the rest 
five are some criteria to evaluate the model 
performance [1, 9, 10, 12, 14]. Besides, users can 
also get the optimal release time based on the desired 
release criteria [9-12, 15]. 

 
4.4 Simulation Results 

Fig. 10 shows the cumulative number of failures 
of Ohba’s data set. Fig. 11 shows the performance 
comparisons based on the parameters estimated by 
LSE. Each simulation result has its own diagram 
independently. However, we only consider figures for 
LSE as illustrations due to the limitation of space.  
 
4.5 Report Generator 

CARATS can generate a very detailed reliability 
analysis report as shown in Fig. 12, which contains 
all of the estimation results and figures. Weekly 
estimations report can be used to verify the reliability 
growth. All of these report items can be customized. 

5. Conclusions 
In this paper, we present a user-friendly software 

reliability assessment tool, CARATS, which can be 
used to measure a software product through its 
development process. CARATS is expected to have 
widely impact due to its abundant functionality. It 
supports several famous SRGMs and introduces a 
rarely implemented predicting technology, neural 
networks. Furthermore, CARATS can also suggest 
optimal release time based on the desired release 
criteria. In early days, to analyze and predict software 
reliability is difficult since integrated assessment 
tools are very rare. Nowadays, CARATS provides a 
much more elegant solution for systematic software 
reliability prediction. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Project Creation Wizard 



Fig. 8 Execution screenshot. 
 

 
(a) Detail settings for selected data set. 

 
 (b) Detail settings for selected data set. 

 
(c) Brief reports for selected data set. 
Fig. 9 Viewing and adjusting settings. 

 

 
Fig. 10 Cumulative number of failures for Ohba’s 

data set. 

 
(a) Mean Value Function (LSE/All Models). 

 
(b) Relative Error (LSE/All Models). 

 
(c) Failure Rate (LSE/All Models). 

 
 (d) U plot (LSE/All Models). 

 
(e) Y plot (LSE/All Models). 

Fig. 11 Simulation results for Ohba’s data set. 
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