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Abstract: It has become increasingly important to develop hands-free speech recognition 
techniques for the human-computer interface in car environments. However, severe car noise 
degrades the speech recognition performance substantially. To compensate the performance loss, 
it is necessary to adapt the original speech hidden Markov models (HMMs) to meet changing car 
environments. A novel frame-synchronous adaptation mechanism for in-car speech recognition is 
presented. This mechanism is intended to perform unsupervised model adaptation efficiently on a 
frame-by-frame basis instead of a conventional adaptation algorithm relying on batch adaptation 
data and supervision information. The proposed adaptation scheme is performed during frame 
likelihood calculation where an optimal equalisation factor is first computed to equalise the model 
mean vector and the input frame vector. This equalisation factor then serves as a reference index to 
retrieve an additional bias vector for model mean adaptation. As a result, a rapid and flexible 
algorithm is exploited to establish a new robust likelihood measure. In experiments on hands-free 
in-car speech recognition with the microphone far from the talker, this framework is found to be 
effective in terms of recognition rate and computational cost under various driving speeds. 

1 Introduction 

There is no doubt that the robustness issue is crucial in 
pattern recognition because a mismatch between training 
and testing data always exists and degrades the recognition 
performance considerably in real-world applications. For 
applications of speech recognition, the distortion sources 
come from inter- and intra-speaker variabilities, transdu- 
cerslchannels and surrounding noises. For instance, when 
the speech recogniser is designed for hands-free control of 
the car equipment including cellular telephones, air condi- 
tioning systems, Global Positioning Systems etc., the noise 
from the engine, music, babble, wind, echo etc. under 
different driving speeds will degrade the performance of 
the recogniser [lo,  201. Also, changes of speaker voice 
caused by abrupt alterations of car noise level (known as 
the Lombard effect) will damage the recogniser [21]. 
However, it is impractical to collect numerous training 
data from various noise conditions to generate speech 
models covering a wide range of environmental statistics. 
A feasible approach is to build an adaptive speech recog- 
niser where the speech models can be adapted to new 
environments using environment-specific adaptation data. 

The issue of adaptive speech recognition has been 
attracting many researchers [18, 221. In the literature, the 
maximum a posteriori (MAP) adaptation of speech hidden 
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Markov models (HMMs) [ 171 and maximum-likelihood 
linear regression (MLLR) [23] provided two main 
approaches to model adaptation. The MAP adaptation 
adjusted the HMM parameters directly using MAP estima- 
tion. This scheme adapted those HMM units with at least 
one sample appearing in adaptation data. Good asymptotic 
properties can be achieved for sufficient adaptation data. In 
addition, the MLLR indirectly adapted the HMM para- 
meters through cluster-dependent transformation fimctions 
in which the parameters were obtained via maximum- 
likelihood (ML) estimation. This transformation-based 
adaptation is effective even using sparse adaptation data. 
In general, these two approaches are feasible for batch 
adaptation in a supervised manner. If the supervision of 
adaptation data is unknown, these methods have to esti- 
mate the supervision of adaptation data through one pass 
of the recognition process. Unsupervised adaptation is then 
performed according to the estimated supervision. The 
quality of estimated supervision can be assessed further 
to improve the unsupervised adaptation [ I ,  7, 191. In [ 1 I], 
an unsupervised frame-synchronous variant of MLLR was 
presented. Moreover, the realistic environments are nonsta- 
tionary due to the evolving nature of environmental statis- 
tics. It is difficult to capture the changing statistics using 
the batch adaptation data. The incremental adaptation 
technique is accordingly important for practical speech 
recognition systems [ 5 ] .  

To avoid waiting for long batch data and preparing data 
supervision, this paper presents a frame-synchronous 
unsupervised adaptation approach for robust car speech 
recognition. The approach is to perform the adaptation 
during the likelihood calculation. Specifically, when the 
observation likelihood is determined an optimal equalisa- 
tion factor is initially computed to equalise the HMM mean 
vector towards the speech frame. The bias of the equalisa- 
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tion is subsequently compensated by a reference vector, 
which is extracted from the pre-stored reference function 
using the optimal equalisation factor as a relation index. 
Therefore, a novel adaptation scheme, called 'adaptation 
by reference', is developed. Herein, the reference function 
is trained through a limited set of speech from car noise 
environments without the need for data supervision. The 
relation indices between optimal equalisation factors and 
adaptation biases are correspondingly constructed using 
the pairs of training frames and HMM mean vectors. These 
indices are stored for table lookup in a testing session. In 
the experiments, the proposed noise compensation 
approach is found to be superior in terms of recognition 
rate and cost under different car driving conditions: 
standby, downtown and freeway. 

2 Frame-synchronous noise compensation 

2.1 Background of adaptive speech recognition 
In this context of statistical recognition, the optimal word 
sequence W of an input utterance X= { x t }  is determined 
according to the Bayes rule 

(I )  

where p(XI U') is the accumulated likelihood of utterance 
X and p(w> is the prior knowledge of word sequence, i.e. 
language model. Using the framework of continuous- 
density HMMs [26], the missing data of state sequence 
S= { s t }  is incorporated into the calculation of accumulated 
likelihood written by 

W = arg maxp(W1X) = a r g p p ( x I W ) p ( W )  
W 

In general, the likelihood computation of eqn. 2 is very 
expensive and almost unattainable. One efficient approach 
is to apply the Viterbinalgorithm. [27] and decode the 
optimal state sequence S= It,}. The summation over all 
possible state sequences in eqn. 2 is accordingly approxi- 
mated by the single most likely state sequence, i.e. 

T 

where n,?, is the initial state probability, ai,-l:, is the state 
transition probability and ba,(x,) is the observation prob- 
ability density function of x ,  in state i, which is modelled 
by a mixture of multivariate Gaussian densities 

b&,) = P(X,IS/ = i, W )  
K K 

= x w i k f ( x f I S i k )  I W i k N ( X / l p i k ,  C i k )  (4) 
k= 1 k= 1 

Herein, wik is the mixture weight, p j k  and Cik are, respec- 
tively, the D x 1 mean vector and D x D covariance matrix 
of state it = i and mixture component k. The likelihood 
measure f ( x ,  I O j k )  of frame x ,  associated with HMM unit 
Oik = ( p i k ,  C i k )  is expressed by 

f (x f l e , )  = (271)-D/2~xikl-1/2 

x exp - - (xt - Pik)"X/ - Pix)] ( 5 )  [ :  
If the acoustics of trained models 6 j k  and test frame x, 
come from the same acoustic environments, the likelihood 
measure defined in eqn, 5 is appropriate for estimating 
optimal word sequence Win eqn. 1. However, realistic car 
environments are adverse such that we cannot predict 
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exactly the specific surrounding noise of car type and 
driving condition from the training material. Hence, it 
becomes necessary either to enhance the test frame x f  or 
to adapt the HMM parameters Of, to achieve robustness of 
speech recognition. In [3, 141, the techniques of spectral 
subtraction and Bayesian signal estimation were useful for 
speech enhancement. Using these techniques, the speech 
signal was enhanced to be acoustically near the trained 
speech models. On the other hand, the parallel model 
combination (PMC), which optimally combined the 
HMMs of speech and noise, was successfully employed 
for noisy speech recognition [ 161. The adaptation of HMM 
parameters using an affine transformation is also popular 
for speaker adaptation [13, 231 and noise adaptation [28]. 
The resulting likelihood measure is given by 

where A,  and b, are, respectively, a D x D scaling matrix 
and a D x 1 bias vector of the cth HMM cluster. The 
cluster-dependent transformation parameters (A , ,  b,) could 
be obtained either by ML estimation or by MAP estimation 
[8] using a period of adaptation data. 

2.2 Optimal equalisation factor 
Mansour and Juang [24] observed that the additive white 
noise would cause norm shrinkage of a speech cepstral 
vector. They consequently designed a distance measure 
where a scaling factor was introduced to compensate the 
cepstral shrinkage for cepstrum-based speech recognition. 
This approach was further extended to the adaptation of 
HMM parameters by detecting an equalisation scalar A 
between the HMM unit elk and noisy speech frame x,  [4]. 
The likelihood measure in eqn. 5 is modified to 

f(x,lA, e,,) = (2n)-D/21C,,I-'/2 

One can determine the optimal equalisation factor A, by 
directly maximising the logarithm of the modified like- 
lihood measure as follows: 

x/,C,'&k 2 ,  = Ae(x,, Oik )  = arg max logf(x,I%, O i k )  = 1 (8) 

Geometrically, this factor is equivalent to the projection of 
X, upon y, weighted by Cl;'. The projection-based like- 
lihood measure is subsequently obtained by substituting Le 
into eqn. 7, i.e. f ( x ,  1 A,, B l k ) .  The corresponding distance 
measure was referred to as the weighted projection 
measure (WPM) [4]. The projection-based likelihood 
measure was also expanded by additionally considering 
the adaptation of the covariance matrix and the variance 
adapted likelihood measure was generated [9]. However, 
the noise in car environments is non-white and is complex 
to characterise. It is difficult to adapt the HMM mean 
vector P j k  properly by only applying the optimal equalisa- 
tion scalar le .  Thus, we are stimulated to perform extra 
adaptation to compensate the adaptation bias of the HMM 
mean vector induced by Ae. It is not possible to estimate the 
adaptation bias in a statistical sense using one speech 
frame. The following approach is accordingly exploited. 

i. Pikc; P i k  
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Fig. 1 Flowchart of speech recognition system based on ABR method 

2.3 Adaptation by reference (ABR) 
As indicated in eqn. 8, the optimal equalisation factor Le 
relates to the observation vector X, and HMM unit eik = 
(p ik ,  Cik). This factor embeds the information of noise 
type, noise level and the relation to HMM parameters. In 
this study, this factor is regarded as a ‘relational reference 
index’ to perform the ‘adaptation by reference’ (ABR). A 
novel likelihood measure correspondingly results from 
merging an extra bias vector boLe) into the likelihood 
measure. It turns out to be 

x exp - 2 [x, - &Plk - ~(4)1’c,’[x, - &P,k - b(ie)l} 
{ l  

(9) 

Note that the bias vector b(Ae) is shared by overall HMM 
units 0 = { e l k }  and retrieved from the pre-trained reference 
function according to the index value A,. The reference 
function is estimated through a small set of in-car speech 
material. The estimation procedure is described in Section 
3.2. Fig. 1 shows the flow chart of the recognition system 
based on the proposed ABR method. It can be seen that the 
optimal equalisation factor 1, is calculated and used to 
extract the bias vector /I(&). Applying the new likelihood 
measure of eqn. 9 to the Viterbi decoding algorithm, the 
optimal word sequence Wassociated with the input speech 
data X can be found. In particular, the optimal equalisation 
factor I,, is computed for each frame x, and HMM unit e l k  
in the WPM and ABR methods. 

3 Estimation of reference function 

In this Section, the estimation procedures for the reference 
function are discussed. First, the in-car speech database 
used in the experiments is described. 

3. I Car speech database 
The car speech database (CARNAV98) was collected in a 
joint project of the National Cheng Kung University and 
the Industrial Technology Research Institute, Taiwan, 
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under contract no. G3-88037. This database contained 14 
control commands and 100 Chinese names uttered by ten 
speakers (five males and five females) and recorded in a 
medium-sized car [Toyota Corolla 1.8 (car l)] and a 
smaller car [Yulon Sentra 1.6 (car 2)]. Three sets of driving 
data for ‘standby’ condition, ‘downtown’ condition and 
‘freeway’ condition with car speeds, respectively, of 
0 km/h, 50 km/h and 90 km/h, were recorded via a high- 
quality MD Walkman of type MZ-R55 and using a hands- 
free Sony ECM-717 microphone far from the talker. 
During recording, the engine was kept on, air-conditioner 
was on, music was off and the windows were closed. 
Speech was digitised at 16-bit accuracy and 8 kHz 
sampling rate. For a speech frame, Hamming windowing 
was applied and a feature vector of 12-order LPC-derived 
cepstral coefficients (denoted by LPCC), 12-order delta 
cepstral coefficients, one delta log energy and one delta 
delta log energy was computed. In this database, car 1 had 
122, 158 and 200 utterances oi’two males and two females 
and car 2 had 204, 263 and 324 utterances of three males 
and three females for driving conditions of standby, down- 
town and freeway, respectively. In total, 1271 utterances 
were gathered. To evaluate the outside performance of the 
proposed method, the speech data of car 1 were adopted for 
estimation of reference function and those of car 2 were 
adopted for recognition experiments. In this case, the 
environmental factors of speaker and car type are entirely 
different for reference function estimation and speech 
recognition. The segmental signal-to-noise ratio (SNR) 
values of various cars and driving conditions are calculated 
and listed in Table 1. It can be seen that car classes and 
driving speeds significantly change the noise levels. The 
lowest SNR of -10.14 occurs for the case of car 2 driven 
under freeway conditions. 

3.2 Estimation procedures 
Generally, the reference function is intended to reveal the 
adaptation bias behaviour of the projection-based likeli- 
hood measure induced by optimal equalisation factor &. 
This function can be non-parametrically extracted from the 
training data of car 1. In a previous study [9], a stereo 
database was prepared by artificially adding the noise 
signal to clean speech to generate the pairs of clean 
frames and corresponding noisy frames. A reference func- 
tion was trained according to the adaptation biases of these 
data pairs. However, it is hard to obtain the simulated 
stereo data in real-world environments. In particular, the 
stereo data in the presence of speaker variabilities and car 
noises are almost unrealisable. To relax the requirement for 
stereo data, the following estimation procedures for the 
reference function are presented. 

First estimation procedure: Although the stereo data are 
not available, one can use the Viterbi decoding algorithm 
directly to search the state and mixture component tags 
associated with the car noisy frames X =  {x,}. To obtain 
better tags, the optimal equalisation factor was applied 

Table 1. Comparison of segmental signal-to-noise ratios 
for different car types and driving conditions 

Toyota Corolla 1.8 Yulon Sentra 1.6 

Standby,dB 10.31 

Downtown, dB 0.34 

Freeway, d B  -3.77 

5.63 

-6.53 

-10.14 
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Only pairs of observation frames {x,} and corresponding HMM parameters { O l k }  = 
function 

Z z k }  obtained by Viterbi decoding are included for estimation of reference 

during Viterbi decoding. The pairs of frames from car 
noise environments and associated HMM parameters 
{ e,, 1 = { p l k ,  C,, 1 are accordingly produced. Given the 
pair data { x t ,  O r , } ,  the optimal equalisation factors {A,} 
of eqn. 8 and the corresponding adaptation biases 
{x, - &plkj  are calculated. These pairs of {A,} and 
{x, - A,,lx} are then plotted in a scatter diagram. Finally, 
the reference function b(2,) is piecewise estimated by 
averaging the scattered values {xt - ?L,p,k) where the 
step size of A, is specified by 0.01 [9]. Herein, the super- 
vision of training data is known during Viterbi decoding. 
This estimation procedure is usually referred to as the 
'piecewise constant approximation'. Fig. 2 displays the 
flow diagram of the first estimation procedure. It is shown 
that only pairs of observation frames { x t }  and correspond- 
ing HMM parameters { O l k }  = {,ulk, &} obtained by the 
Viterbi decoder are included for estimation of the reference 
function. Fig. 3 plots the estimated reference function of 
the first cepstral coefficient. This estimated hnction 
records important adaptation bias factors related to the 
optimal equalisation factor. Generally, there are two 
problems with this procedure. The first is the problem of 
data sparseness when only a small set of training frames is 
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-. 
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-1.4 

-1.6 
- 
I I I I I I I 

-0.5 0 0.5 1 1.5 2 2.5 3 

optimal equalistion factor 
Fig. 3 
obtained by first estimation procedure 
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Reference function of first cepstral coeflccient { b d ( i e ) ,  d= I }  

available. The other is the possibility of decoding inappro- 
priateness of state and mixture component sequences even 
if supervision of training data is provided. To alleviate 
these problems, modifications were made to improve the 
quality of the estimated reference function. 

Second estinzatioiz procedure: In the proposed ABR 
method the optimal equalisation factor 1, is calculated 
and b(A,) is retrieved for adaptation of the HMM mean 
vector. The parameters ?,, and b ( i , )  are varied for each 
likelihood measure f(xt 1 i,, b(&), e,,). Basically, the 
optimal equalisation factor 2, reflects the projection beha- 
viour of xt on d,k  = ( p l k ,  C,,). It is insufficient just to 
couple the observation frame x, with the corresponding 
HMM unit O , ,  obtained by the Viterbi decoder. Hence, it is 
better to couple each individual observation frame x, with 
overall HMM units {e,,} = {pix, C,, 1 for estimation of the 
reference function. In this case, the pairs of optimal 
equalisation factors {A,} and adaptation biases 
{x, - /z,y,,j are greatly increased so as to resolve the 
problem of data sparseness and to obtain a reliable refer- 
ence function. Also, the execution of the Viterbi decoding 
algorithm and the need for training data supervision are 
ignored. Fig. 4 displays the flow diagram of the second 
estimation procedure of the reference function. The piece- 
wise estimation technique mentioned above is still adopted 
herein. In Fig. 5 ,  the histogram of optimal equalisation 
factor is plotted using the training data of car 1. Because 
car noise is coloured it is observed that most optimal 
equalisation factors have values between 0 and 3, which 
are different from those in the presence of white noise [24]. 
In Figs. 6 and 7, the reference functions b(&) = {bd(jL,) ,  
d = 1, . . . , D} of the first and second cepstral coefficients, 
respectively, are illustrated. It can be seen that estimated 
curves are smooth and vary for different cepstral coeffi- 
cients. The estimated reference function of the first cepstral 
coefficient using the first estimation procedure (Fig. 3) 
appears to be close to that using second estimation proce- 
dure (Fig. 6). Further, regarding the issue of memory cost, 
if the value 2, of the 26-order reference function is limited 
between 0 and 3 with a step size of 0.01, the number of 
recorded floating points is 7800 (300 x 26). The occupied 
memory size is about 30 kbyte, which is small for a speech 
recogniser. 
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-0.2 

Note that the adaptation of the HMM mean vector in the 
ABR method has a form of affine transformation, which is 
similar to the MLLR adaptation in eqn. 6. The main 
differences between the proposed ABR method and the 
MLLR adaptation are threefold. 

- 

(i) The scaling factor of the model adaptation is a diagonal 
matrix with identical components A e l  in the ABR method 
and a general matrix A ,  in the MLLR adaptation. 
(ii) In the MLLR adaptation, the transformation para- 
meters (& b,) are estimated using the ML principle 
through a set of speech frames. In contrast, the ABR 
method computes A, and looks up b(A,) for each Erame 
likelihood calculation. The reference function b(ie) should 
be prepared beforehand. 
(iii) If unsupervised adaptation using the MLLR is 
required the cost of two-pass Viterbi decoding is needed. 
Conversely, ABR is a frame-synchronous unsupervised 
adaptation approach employed in each frame likelihood 
calculation. 

There is also a parallel with the eigenvoice method, which 
can be related to MLLR [ 15, 251. In the eigenvoice method, 
the bias was expressed as a linear combination of a series of 
basis vectors. The bias function b(Ae), herein, can be viewed 
as a non-linear formulation of a mean shift vector, para- 
meterised by A, for a single cluster of parameters. Moreover, 
in ABR, the adaptation parameters are obtained via memory 
association, wheareas in eigenvoice it is done using the ML 
principle on a per-session or utterance basis. In the present 
experiments, MLLR and ABR will be compared in terms of 
recognition time and recognition rate. 
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Reference junction of jirst cepstral coe8cient {bd(&), d=  I } Fig. 7 
obtained by second estimution procedure 

Reference,function of second cepstral coeflcient {b<,(&), d = 2 }  
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4.7 Experimental setup and baseline system 
The experiments conducted in this paper are aimed at 
recognition of Mandarin speech in car environments. 
Mandann is a syllabic and tonal language. Without consid- 
ering the tonal information, the overall number of 
Mandarin syllables is 408. In general, each Mandarin 
syllable can be divided into an initial (consonant) part 
and a final (vowel) part. When the syllable only has a final 
part, a null initial exists in practice. In this study, context- 
dependent subsyllable modelling was employed for 
constructing the HMM units of Mandarin speech [5]. 
Cumulatively, there were 93 context-dependent (CD) initi- 
als, 38 context-independent (CI) finals and 33 null initials 
generated in the experiments. CD initials, CI finals and null 
initials were arranged, respectively, by three, four and two 
left-to-right HMM states without state skipping. Hence, 
498 HMM states (279 for CD initials, 152 for C1 finals, 66 
for null initials and 1 for background silence) were set up 
to cover all phonetics of 408 Mandarin syllables. Each 
HMM state contained four mixture components. During a 
training session, a speech database consisting of 5045 
phonetically balanced Mandarin words uttered by 5 1 
males and 50 females was collected. Each Mandarin 
word contained two to four syllables. This database was 
recorded in an office and via a high-quality microphone. It 
was applied to estimate the speaker-independent (SI) 
continuous-density HMM parameters. Basically, the speak- 
ers, microphone and ambient noise of the training database 
are completely different from those of the CARNAV98 
database. The recognition system used in the experiment 
was intended to recognise the utterances of 14 control 
commands and 100 Chinese names under various driving 
conditions from a data set of car 2. A simulated human-car 
voice interface was demonstrated in [6]. Herein, speech 
recognition rates are averaged over three male and three 
female speakers. It is reported that the baseline system (i.e. 
using SI HMM parameters without any adaptation) attains 
the recognition rates of 70.1%, 36.6% and 18.2% for 
driving conditions of standby, downtown and freeway, 
respectively. In the following experiments, the effects of 
training data size and estimation procedure on reference 
function estimation are investigated. The recognition rates 
and recognition speeds of baseline, MLLR, WPM and 
ABR methods were compared for various driving condi- 
tions. Finally, the feature representation adopting a mel- 
scale frequency cepstral coefficient (MFCC) is evaluated. 
Cepstral mean subtraction (CMS) [2] is included for 
comparison. 

4.2 Effects of training data size and estimation 
procedure 
First, the recognition performance of the ABR method 
when the amount of training data is changed is examined 
for estimation of a reference function. To conduct such an 
examination, the utterances of one male and one female 
from car 1 data set were chosen at random to generate the 
l M l F  data size. All utterances of the car 1 data set 
containing utterances of two males and two females are 
used to form the 2M2F data size. Note that, those utter- 
ances including three driving conditions were collected 
using a car type and speakers which were different from 
those used for the recognition data. In this comparison, the 
first estimation procedure is applied. As shown in Fig. 8, 
the ABR method outperforms the baseline system substan- 
tially. Also, the ABR method with a training data size of 
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Fig. 8 Comparison of recognition rates of baseline system and ABR 
under various driving conditions 
Different training data sizes and estimation procedures are examined for 
estimation of reference function 
-0- ABR, 2M2F, second estimation 
-*- ABR, 2M2F, first estimation 
-A- ABR, lMlF, first estimation 
- -x- - baseline 

2M2F attains better recognition performance than that of 
l M l F  for various driving speeds. This is because the larger 
amount of training data provides richer statistics which 
enables better adaptation factors of the HMM parameters 
to be retrieved. However, the cost of data collection is also 
increased. For downtown driving, the recognition rates are 
improved from 57.7% for l M l F  to 63.9% for 2M2F, which 
are significantly better than the 36.6% of the baseline 
system. 

On the other hand the training data size was set to be 
2M2F and the speech recognition rates were evaluated 
using different estimation procedures in the ABR 
method. From Fig. 8, it can be seen that the second 
estimation procedure achieves higher recognition rates 
than the first estimation procedure no matter what driving 
conditions are evaluated. For example, the recognition 
rates are increased from 92.5% using the first estimation 
procedure to 95% using the second estimation procedure in 
the standby condition. Such results reveal that integration 
of the pairs of each training frame xt and all HMM units 
{e,,} = { p L k ,  C,,} into piecewise estimation of the refer- 
ence function does improve the robustness of the estimated 
function b(&). Hence, it is suggested that the second 
estimation procedure, without any need for data super- 
vision, is a good choice for the ABR method. 

4.3 Comparison of recognition rates and 
recognition speeds for different methods 
It is also interesting to compare the recognition rates of the 
ABR method with the WPM and MLLR methods. In 
MLLR, one regression function shared by all HMM units 
was estimated on a per-utterance basis. The regression 
matrix was simplified to be diagonal [23]. Only one 
expectation-maximisation (EM) iteration [ 121 was 
performed. The recognition comparison is demonstrated 
in Fig. 9. It can be seen that the WPM and MLLR methods 
make significant progress compared with the baseline 
system. Further, MLLR adaptation performs a little better 
than the WPM. However, when the ABR method is 
considered, it is obvious that the ABR method obtains 
the best recognition performance for different car noise 
environments. For freeway driving, the recognition rates of 
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WPM and MLLR are, respectively, 24.3% and 25%. The 
improvement using MLLR is not significant since the 
supervision is not reliably estimated in severe car-noisy 
environments. Conversely, using the ABR method, the 
recognition rates can be raised greatly to 33.6% when the 
2M2F data size and the second estimation procedure are 
adopted. Nevertheless, the ABR method needs to collect 
and train a small data set to obtain a reference function. In 
addition recognition speeds of the baseline system, WPM, 
MLLR and ABR were determined. The recognition speeds 
are averaged over all test utterances and measured in 
seconds per utterance through simulating the algorithms 
on a Pentium I1 350 personal computer. As reported in 
Table 2, the recognition cost of MLLR is the most 
expensive among the algorithms mentioned because two 
passes of Viterbi decoding are needed for supervision 
estimation and speech recognition. On the other hand, 
WPM and ABR are frame-synchronous methods in 
which model adaptation and speech recognition are carried 
out in the same session. The computational overheads of 
WPM and ABR are spent on the calculation of optimal 
equalisation factors and the adaptation of HMM para- 
meters for each frame likelihood measure. 

4.4 Effect of feature representation using MFCC 
Furthermore, the ABR method was compared with another 
common feature representation based on MFCC. In the 
following experiments, the feature vector is switched to 12- 
order MFCC, 12-order delta MFCC, one delta log energy 
and one delta delta log energy. The baseline system, CMS, 
WPM and ABR, was carried out. The baseline results 
using LPCC are given for comparison. In ABR, the 
reference function is re-estimated using the 2M2F data 
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size and following the second estimation procedure. The 
recognition rates are reported in Fig. 10. It can be seen that 
feature representation using MFCC performs better than 
that using LPCC. For freeway driving, the recognition rate 
is increased to 23.1%. This reveals that MFCC is a good 
feature representation for in-car speech recognition. More- 
over, the performance of CMS and WPM is similar, but 
CMS is not frame-synchronous. The ABR is still signifi- 
cantly better than other methods in different driving condi- 
tions. In the standby condition, the recognition rates are 
87.5% and 89.2% for CMS and WPM, respectively. 
However, ABR can achieve 96.5%. From all the experi- 
mental results, the superiority and feasibility of the 
proposed ABR method for hands-free speech recognition 
in car environments are confirmed. 

5 Conclusions 

This paper has presented a novel frame-synchronous model 
adaptation approach to hands-free car speech recognition. 
The proposed approach was designed to compute an 
optimal scaling factor to equalise the HMM mean vector 
towards the input observation vector for an individual 
frame likelihood measure. The adaptation bias caused by 
an optimal equalisation factor was subsequently compen- 
sated by a reference vector, which was retrieved according 
to the index of the optimal equalisation factor. During 
training, a small set of speech from a car noise environ- 
ment was used to estimate the reference function contain- 
ing important adaptation behaviours. After a series of 
experimental investigations, it was found that the increase 
of training data size did benefit the estimation of a 
statistically rich reference function. The estimation proce- 
dure could be improved by considering the data pairs of 
each observation frame associated with all HMM para- 
meters. The needs for data supervision and Viterbi decod- 
ing were neglected. In addition, it was shown that the 
proposed method consumed moderate recognition time and 
achieved higher recognition rates compared with the base- 
line system or the CMS, WPM and MLLR methods. The 
feature representations using LPCC and MFCC were 
feasible for the proposed method. All investigations were 
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carried out across three kinds of driving conditions using a 
hands-free microphone far from the talker. In future work, 
we would like to enhance the individuality of reference 
function with respect to various HMM parameters to 
improve the performance further. Also, other types of 
relational index should be explored and more car classes 
should be tested for the proposed ABR method. 
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